| #include "Generator.h" |
| |
| #include <structmember.h> |
| #include <ATen/ATen.h> |
| |
| #include <stdbool.h> |
| #include <TH/TH.h> |
| #include "THP.h" |
| #include "torch/csrc/Exceptions.h" |
| #include "torch/csrc/autograd/python_variable.h" |
| #include "torch/csrc/autograd/generated/VariableType.h" |
| #include "torch/csrc/utils/tensor_types.h" |
| #include "torch/csrc/autograd/generated/variable_factories.h" |
| |
| using namespace at; |
| using namespace torch; |
| |
| PyObject *THPGeneratorClass = nullptr; |
| |
| PyObject * THPGenerator_New() |
| { |
| PyObject *args = PyTuple_New(0); |
| if (!args) { |
| PyErr_SetString(PyExc_RuntimeError, "Could not create a new generator object - " |
| "failed to allocate argument tuple"); |
| return nullptr; |
| } |
| PyObject *result = PyObject_Call((PyObject*)THPGeneratorClass, args, nullptr); |
| Py_DECREF(args); |
| return result; |
| } |
| |
| PyObject * THPGenerator_NewWithGenerator(at::Generator& cdata) |
| { |
| auto type = (PyTypeObject*)THPGeneratorClass; |
| auto self = THPObjectPtr{type->tp_alloc(type, 0)}; |
| if (!self) throw python_error(); |
| auto self_ = reinterpret_cast<THPGenerator*>(self.get()); |
| self_->cdata = &cdata; |
| return self.release(); |
| } |
| |
| static void THPGenerator_dealloc(THPGenerator* self) |
| { |
| if (self->owner) { |
| delete self->cdata; |
| } |
| Py_TYPE(self)->tp_free((PyObject*)self); |
| } |
| |
| static PyObject * THPGenerator_pynew(PyTypeObject *type, PyObject *args, PyObject *kwargs) |
| { |
| HANDLE_TH_ERRORS |
| if ((args && PyTuple_Size(args) != 0) || kwargs) { |
| THPUtils_setError("torch.Generator constructor doesn't accept any arguments"); |
| return nullptr; |
| } |
| THPGeneratorPtr self((THPGenerator *)type->tp_alloc(type, 0)); |
| // having to pick a specific type rather than just a backend here is strange, |
| // but we don't really have fully fledged backend objects. |
| self->cdata = at::CPU(at::kFloat).generator().release(); |
| self->owner = true; |
| return (PyObject*)self.release(); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPGenerator_getState(THPGenerator *self) |
| { |
| using namespace torch::autograd; |
| HANDLE_TH_ERRORS |
| THGenerator *generator = THPGenerator_TH_CData(self); |
| Variable var = torch::empty({0}, at::device(at::kCPU).dtype(at::kByte)); |
| THByteTensor_getRNGState(generator, (THByteTensor*)(var.data().unsafeGetTensorImpl())); |
| return THPVariable_Wrap(std::move(var)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPGenerator_setState(THPGenerator *self, PyObject *_new_state) |
| { |
| using namespace torch::autograd; |
| HANDLE_TH_ERRORS |
| if (!THPVariable_Check(_new_state)) { |
| throw TypeError("expected a torch.ByteTensor, but got %s", Py_TYPE(_new_state)->tp_name); |
| } |
| auto& tensor = ((THPVariable*)_new_state)->cdata.data(); |
| if (tensor.type() != CPU(kByte)) { |
| auto type_name = torch::utils::type_to_string(tensor.type()); |
| throw TypeError("expected a torch.ByteTensor, but got %s", type_name.c_str()); |
| } |
| THGenerator *generator = THPGenerator_TH_CData(self); |
| THByteTensor_setRNGState(generator, (THByteTensor*)tensor.unsafeGetTensorImpl()); |
| Py_INCREF(self); |
| return (PyObject*)self; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPGenerator_manualSeed(THPGenerator *self, PyObject *seed) |
| { |
| HANDLE_TH_ERRORS |
| auto generator = self->cdata; |
| THPUtils_assert(THPUtils_checkLong(seed), "manual_seed expected a long, " |
| "but got %s", THPUtils_typename(seed)); |
| generator->manualSeed(THPUtils_unpackLong(seed)); |
| Py_INCREF(self); |
| return (PyObject*)self; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPGenerator_seed(THPGenerator *self) |
| { |
| HANDLE_TH_ERRORS |
| return THPUtils_packUInt64(self->cdata->seed()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPGenerator_initialSeed(THPGenerator *self) |
| { |
| HANDLE_TH_ERRORS |
| return THPUtils_packUInt64(self->cdata->initialSeed()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyMethodDef THPGenerator_methods[] = { |
| {"get_state", (PyCFunction)THPGenerator_getState, METH_NOARGS, nullptr}, |
| {"set_state", (PyCFunction)THPGenerator_setState, METH_O, nullptr}, |
| {"manual_seed", (PyCFunction)THPGenerator_manualSeed, METH_O, nullptr}, |
| {"seed", (PyCFunction)THPGenerator_seed, METH_NOARGS, nullptr}, |
| {"initial_seed", (PyCFunction)THPGenerator_initialSeed, METH_NOARGS, nullptr}, |
| {nullptr} |
| }; |
| |
| static struct PyMemberDef THPGenerator_members[] = { |
| {(char*)"_cdata", T_ULONGLONG, offsetof(THPGenerator, cdata), READONLY, nullptr}, |
| {nullptr} |
| }; |
| |
| PyTypeObject THPGeneratorType = { |
| PyVarObject_HEAD_INIT(nullptr, 0) |
| "torch._C.Generator", /* tp_name */ |
| sizeof(THPGenerator), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| (destructor)THPGenerator_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| 0, /* tp_repr */ |
| 0, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| 0, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| 0, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ |
| nullptr, /* tp_doc */ |
| 0, /* tp_traverse */ |
| 0, /* tp_clear */ |
| 0, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| 0, /* tp_iter */ |
| 0, /* tp_iternext */ |
| THPGenerator_methods, /* tp_methods */ |
| THPGenerator_members, /* tp_members */ |
| 0, /* tp_getset */ |
| 0, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| 0, /* tp_init */ |
| 0, /* tp_alloc */ |
| THPGenerator_pynew, /* tp_new */ |
| }; |
| |
| bool THPGenerator_init(PyObject *module) |
| { |
| THPGeneratorClass = (PyObject*)&THPGeneratorType; |
| if (PyType_Ready(&THPGeneratorType) < 0) |
| return false; |
| Py_INCREF(&THPGeneratorType); |
| PyModule_AddObject(module, "Generator", (PyObject *)&THPGeneratorType); |
| return true; |
| } |