blob: dd774e1cea15fdf29839459507fb6f959883131b [file] [log] [blame]
#include "Generator.h"
#include <structmember.h>
#include <ATen/ATen.h>
#include <stdbool.h>
#include <TH/TH.h>
#include "THP.h"
#include "torch/csrc/Exceptions.h"
#include "torch/csrc/autograd/python_variable.h"
#include "torch/csrc/autograd/generated/VariableType.h"
#include "torch/csrc/utils/tensor_types.h"
#include "torch/csrc/autograd/generated/variable_factories.h"
using namespace at;
using namespace torch;
PyObject *THPGeneratorClass = nullptr;
PyObject * THPGenerator_New()
{
PyObject *args = PyTuple_New(0);
if (!args) {
PyErr_SetString(PyExc_RuntimeError, "Could not create a new generator object - "
"failed to allocate argument tuple");
return nullptr;
}
PyObject *result = PyObject_Call((PyObject*)THPGeneratorClass, args, nullptr);
Py_DECREF(args);
return result;
}
PyObject * THPGenerator_NewWithGenerator(at::Generator& cdata)
{
auto type = (PyTypeObject*)THPGeneratorClass;
auto self = THPObjectPtr{type->tp_alloc(type, 0)};
if (!self) throw python_error();
auto self_ = reinterpret_cast<THPGenerator*>(self.get());
self_->cdata = &cdata;
return self.release();
}
static void THPGenerator_dealloc(THPGenerator* self)
{
if (self->owner) {
delete self->cdata;
}
Py_TYPE(self)->tp_free((PyObject*)self);
}
static PyObject * THPGenerator_pynew(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
HANDLE_TH_ERRORS
if ((args && PyTuple_Size(args) != 0) || kwargs) {
THPUtils_setError("torch.Generator constructor doesn't accept any arguments");
return nullptr;
}
THPGeneratorPtr self((THPGenerator *)type->tp_alloc(type, 0));
// having to pick a specific type rather than just a backend here is strange,
// but we don't really have fully fledged backend objects.
self->cdata = at::CPU(at::kFloat).generator().release();
self->owner = true;
return (PyObject*)self.release();
END_HANDLE_TH_ERRORS
}
static PyObject * THPGenerator_getState(THPGenerator *self)
{
using namespace torch::autograd;
HANDLE_TH_ERRORS
THGenerator *generator = THPGenerator_TH_CData(self);
Variable var = torch::empty({0}, at::device(at::kCPU).dtype(at::kByte));
THByteTensor_getRNGState(generator, (THByteTensor*)(var.data().unsafeGetTensorImpl()));
return THPVariable_Wrap(std::move(var));
END_HANDLE_TH_ERRORS
}
static PyObject * THPGenerator_setState(THPGenerator *self, PyObject *_new_state)
{
using namespace torch::autograd;
HANDLE_TH_ERRORS
if (!THPVariable_Check(_new_state)) {
throw TypeError("expected a torch.ByteTensor, but got %s", Py_TYPE(_new_state)->tp_name);
}
auto& tensor = ((THPVariable*)_new_state)->cdata.data();
if (tensor.type() != CPU(kByte)) {
auto type_name = torch::utils::type_to_string(tensor.type());
throw TypeError("expected a torch.ByteTensor, but got %s", type_name.c_str());
}
THGenerator *generator = THPGenerator_TH_CData(self);
THByteTensor_setRNGState(generator, (THByteTensor*)tensor.unsafeGetTensorImpl());
Py_INCREF(self);
return (PyObject*)self;
END_HANDLE_TH_ERRORS
}
static PyObject * THPGenerator_manualSeed(THPGenerator *self, PyObject *seed)
{
HANDLE_TH_ERRORS
auto generator = self->cdata;
THPUtils_assert(THPUtils_checkLong(seed), "manual_seed expected a long, "
"but got %s", THPUtils_typename(seed));
generator->manualSeed(THPUtils_unpackLong(seed));
Py_INCREF(self);
return (PyObject*)self;
END_HANDLE_TH_ERRORS
}
static PyObject * THPGenerator_seed(THPGenerator *self)
{
HANDLE_TH_ERRORS
return THPUtils_packUInt64(self->cdata->seed());
END_HANDLE_TH_ERRORS
}
static PyObject * THPGenerator_initialSeed(THPGenerator *self)
{
HANDLE_TH_ERRORS
return THPUtils_packUInt64(self->cdata->initialSeed());
END_HANDLE_TH_ERRORS
}
static PyMethodDef THPGenerator_methods[] = {
{"get_state", (PyCFunction)THPGenerator_getState, METH_NOARGS, nullptr},
{"set_state", (PyCFunction)THPGenerator_setState, METH_O, nullptr},
{"manual_seed", (PyCFunction)THPGenerator_manualSeed, METH_O, nullptr},
{"seed", (PyCFunction)THPGenerator_seed, METH_NOARGS, nullptr},
{"initial_seed", (PyCFunction)THPGenerator_initialSeed, METH_NOARGS, nullptr},
{nullptr}
};
static struct PyMemberDef THPGenerator_members[] = {
{(char*)"_cdata", T_ULONGLONG, offsetof(THPGenerator, cdata), READONLY, nullptr},
{nullptr}
};
PyTypeObject THPGeneratorType = {
PyVarObject_HEAD_INIT(nullptr, 0)
"torch._C.Generator", /* tp_name */
sizeof(THPGenerator), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)THPGenerator_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
nullptr, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
THPGenerator_methods, /* tp_methods */
THPGenerator_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
THPGenerator_pynew, /* tp_new */
};
bool THPGenerator_init(PyObject *module)
{
THPGeneratorClass = (PyObject*)&THPGeneratorType;
if (PyType_Ready(&THPGeneratorType) < 0)
return false;
Py_INCREF(&THPGeneratorType);
PyModule_AddObject(module, "Generator", (PyObject *)&THPGeneratorType);
return true;
}