| import warnings |
| import torch |
| from . import Linear |
| from torch.nn.init import xavier_uniform_ |
| from torch.nn.init import constant_ |
| from torch.nn.init import xavier_normal_ |
| from torch.nn.parameter import Parameter |
| from .module import Module |
| from .. import functional as F |
| |
| |
| class Threshold(Module): |
| r"""Thresholds each element of the input Tensor. |
| |
| Threshold is defined as: |
| |
| .. math:: |
| y = |
| \begin{cases} |
| x, &\text{ if } x > \text{threshold} \\ |
| \text{value}, &\text{ otherwise } |
| \end{cases} |
| |
| Args: |
| threshold: The value to threshold at |
| value: The value to replace with |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.Threshold(0.1, 20) |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['threshold', 'value', 'inplace'] |
| |
| def __init__(self, threshold, value, inplace=False): |
| super(Threshold, self).__init__() |
| self.threshold = threshold |
| self.value = value |
| self.inplace = inplace |
| # TODO: check in THNN (if inplace == True, then assert value <= threshold) |
| |
| def forward(self, input): |
| return F.threshold(input, self.threshold, self.value, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = ', inplace=True' if self.inplace else '' |
| return 'threshold={}, value={}{}'.format( |
| self.threshold, self.value, inplace_str |
| ) |
| |
| |
| class ReLU(Module): |
| r"""Applies the rectified linear unit function element-wise: |
| |
| :math:`\text{ReLU}(x)= \max(0, x)` |
| |
| Args: |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/ReLU.png |
| |
| Examples:: |
| |
| >>> m = nn.ReLU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| |
| |
| An implementation of CReLU - https://arxiv.org/abs/1603.05201 |
| |
| >>> m = nn.ReLU() |
| >>> input = torch.randn(2).unsqueeze(0) |
| >>> output = torch.cat((m(input),m(-input))) |
| """ |
| __constants__ = ['inplace'] |
| |
| def __init__(self, inplace=False): |
| super(ReLU, self).__init__() |
| self.inplace = inplace |
| |
| def forward(self, input): |
| return F.relu(input, inplace=self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = 'inplace=True' if self.inplace else '' |
| return inplace_str |
| |
| |
| class RReLU(Module): |
| r"""Applies the randomized leaky rectified liner unit function, element-wise, |
| as described in the paper: |
| |
| `Empirical Evaluation of Rectified Activations in Convolutional Network`_. |
| |
| The function is defined as: |
| |
| .. math:: |
| \text{RReLU}(x) = |
| \begin{cases} |
| x & \text{if } x \geq 0 \\ |
| ax & \text{ otherwise } |
| \end{cases} |
| |
| where :math:`a` is randomly sampled from uniform distribution |
| :math:`\mathcal{U}(\text{lower}, \text{upper})`. |
| |
| See: https://arxiv.org/pdf/1505.00853.pdf |
| |
| Args: |
| lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}` |
| upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}` |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.RReLU(0.1, 0.3) |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| |
| .. _`Empirical Evaluation of Rectified Activations in Convolutional Network`: |
| https://arxiv.org/abs/1505.00853 |
| """ |
| __constants__ = ['lower', 'upper', 'inplace'] |
| |
| def __init__(self, lower=1. / 8, upper=1. / 3, inplace=False): |
| super(RReLU, self).__init__() |
| self.lower = lower |
| self.upper = upper |
| self.inplace = inplace |
| |
| def forward(self, input): |
| return F.rrelu(input, self.lower, self.upper, self.training, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = ', inplace=True' if self.inplace else '' |
| return 'lower={}, upper={}{}'.format(self.lower, self.upper, inplace_str) |
| |
| |
| class Hardtanh(Module): |
| r"""Applies the HardTanh function element-wise |
| |
| HardTanh is defined as: |
| |
| .. math:: |
| \text{HardTanh}(x) = \begin{cases} |
| 1 & \text{ if } x > 1 \\ |
| -1 & \text{ if } x < -1 \\ |
| x & \text{ otherwise } \\ |
| \end{cases} |
| |
| The range of the linear region :math:`[-1, 1]` can be adjusted using |
| :attr:`min_val` and :attr:`max_val`. |
| |
| Args: |
| min_val: minimum value of the linear region range. Default: -1 |
| max_val: maximum value of the linear region range. Default: 1 |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Keyword arguments :attr:`min_value` and :attr:`max_value` |
| have been deprecated in favor of :attr:`min_val` and :attr:`max_val`. |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Hardtanh.png |
| |
| Examples:: |
| |
| >>> m = nn.Hardtanh(-2, 2) |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['min_val', 'max_val', 'inplace'] |
| |
| def __init__(self, min_val=-1., max_val=1., inplace=False, min_value=None, max_value=None): |
| super(Hardtanh, self).__init__() |
| if min_value is not None: |
| warnings.warn("keyword argument min_value is deprecated and rename to min_val") |
| min_val = min_value |
| if max_value is not None: |
| warnings.warn("keyword argument max_value is deprecated and rename to max_val") |
| max_val = max_value |
| |
| self.min_val = min_val |
| self.max_val = max_val |
| self.inplace = inplace |
| assert self.max_val > self.min_val |
| |
| def forward(self, input): |
| return F.hardtanh(input, self.min_val, self.max_val, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = ', inplace=True' if self.inplace else '' |
| return 'min_val={}, max_val={}{}'.format( |
| self.min_val, self.max_val, inplace_str |
| ) |
| |
| |
| class ReLU6(Hardtanh): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{ReLU6}(x) = \min(\max(0,x), 6) |
| |
| Args: |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/ReLU6.png |
| |
| Examples:: |
| |
| >>> m = nn.ReLU6() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| def __init__(self, inplace=False): |
| super(ReLU6, self).__init__(0., 6., inplace) |
| |
| def extra_repr(self): |
| inplace_str = 'inplace=True' if self.inplace else '' |
| return inplace_str |
| |
| |
| class Sigmoid(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)} |
| |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Sigmoid.png |
| |
| Examples:: |
| |
| >>> m = nn.Sigmoid() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| def forward(self, input): |
| return torch.sigmoid(input) |
| |
| |
| class Tanh(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{Tanh}(x) = \tanh(x) = \frac{e^x - e^{-x}} {e^x + e^{-x}} |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Tanh.png |
| |
| Examples:: |
| |
| >>> m = nn.Tanh() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| def forward(self, input): |
| return torch.tanh(input) |
| |
| |
| class ELU(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{ELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x) - 1)) |
| |
| Args: |
| alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0 |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/ELU.png |
| |
| Examples:: |
| |
| >>> m = nn.ELU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['alpha', 'inplace'] |
| |
| def __init__(self, alpha=1., inplace=False): |
| super(ELU, self).__init__() |
| self.alpha = alpha |
| self.inplace = inplace |
| |
| def forward(self, input): |
| return F.elu(input, self.alpha, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = ', inplace=True' if self.inplace else '' |
| return 'alpha={}{}'.format(self.alpha, inplace_str) |
| |
| |
| class CELU(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1)) |
| |
| More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ . |
| |
| Args: |
| alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0 |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/CELU.png |
| |
| Examples:: |
| |
| >>> m = nn.CELU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| |
| .. _`Continuously Differentiable Exponential Linear Units`: |
| https://arxiv.org/abs/1704.07483 |
| """ |
| __constants__ = ['alpha', 'inplace'] |
| |
| def __init__(self, alpha=1., inplace=False): |
| super(CELU, self).__init__() |
| self.alpha = alpha |
| self.inplace = inplace |
| |
| def forward(self, input): |
| return F.celu(input, self.alpha, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = ', inplace=True' if self.inplace else '' |
| return 'alpha={}{}'.format(self.alpha, inplace_str) |
| |
| |
| class SELU(Module): |
| r"""Applied element-wise, as: |
| |
| .. math:: |
| \text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) |
| |
| with :math:`\alpha = 1.6732632423543772848170429916717` and |
| :math:`\text{scale} = 1.0507009873554804934193349852946`. |
| |
| More details can be found in the paper `Self-Normalizing Neural Networks`_ . |
| |
| Args: |
| inplace (bool, optional): can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/SELU.png |
| |
| Examples:: |
| |
| >>> m = nn.SELU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| |
| .. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515 |
| """ |
| __constants__ = ['inplace'] |
| |
| def __init__(self, inplace=False): |
| super(SELU, self).__init__() |
| self.inplace = inplace |
| |
| def forward(self, input): |
| return F.selu(input, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = 'inplace=True' if self.inplace else '' |
| return inplace_str |
| |
| |
| class GLU(Module): |
| r"""Applies the gated linear unit function |
| :math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half |
| of the input matrices and :math:`b` is the second half. |
| |
| Args: |
| dim (int): the dimension on which to split the input. Default: -1 |
| |
| Shape: |
| - Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2` |
| |
| Examples:: |
| |
| >>> m = nn.GLU() |
| >>> input = torch.randn(4, 2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['dim'] |
| |
| def __init__(self, dim=-1): |
| super(GLU, self).__init__() |
| self.dim = dim |
| |
| def forward(self, input): |
| return F.glu(input, self.dim) |
| |
| def extra_repr(self): |
| return 'dim={}'.format(self.dim) |
| |
| |
| class Hardshrink(Module): |
| r"""Applies the hard shrinkage function element-wise: |
| |
| .. math:: |
| \text{HardShrink}(x) = |
| \begin{cases} |
| x, & \text{ if } x > \lambda \\ |
| x, & \text{ if } x < -\lambda \\ |
| 0, & \text{ otherwise } |
| \end{cases} |
| |
| Args: |
| lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5 |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Hardshrink.png |
| |
| Examples:: |
| |
| >>> m = nn.Hardshrink() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['lambd'] |
| |
| def __init__(self, lambd=0.5): |
| super(Hardshrink, self).__init__() |
| self.lambd = lambd |
| |
| def forward(self, input): |
| return F.hardshrink(input, self.lambd) |
| |
| def extra_repr(self): |
| return '{}'.format(self.lambd) |
| |
| |
| class LeakyReLU(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x) |
| |
| |
| or |
| |
| .. math:: |
| \text{LeakyRELU}(x) = |
| \begin{cases} |
| x, & \text{ if } x \geq 0 \\ |
| \text{negative\_slope} \times x, & \text{ otherwise } |
| \end{cases} |
| |
| Args: |
| negative_slope: Controls the angle of the negative slope. Default: 1e-2 |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/LeakyReLU.png |
| |
| Examples:: |
| |
| >>> m = nn.LeakyReLU(0.1) |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['inplace', 'negative_slope'] |
| |
| def __init__(self, negative_slope=1e-2, inplace=False): |
| super(LeakyReLU, self).__init__() |
| self.negative_slope = negative_slope |
| self.inplace = inplace |
| |
| def forward(self, input): |
| return F.leaky_relu(input, self.negative_slope, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = ', inplace=True' if self.inplace else '' |
| return 'negative_slope={}{}'.format(self.negative_slope, inplace_str) |
| |
| |
| class LogSigmoid(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right) |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/LogSigmoid.png |
| |
| Examples:: |
| |
| >>> m = nn.LogSigmoid() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| def forward(self, input): |
| return F.logsigmoid(input) |
| |
| |
| class Softplus(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) |
| |
| SoftPlus is a smooth approximation to the ReLU function and can be used |
| to constrain the output of a machine to always be positive. |
| |
| For numerical stability the implementation reverts to the linear function |
| for inputs above a certain value. |
| |
| Args: |
| beta: the :math:`\beta` value for the Softplus formulation. Default: 1 |
| threshold: values above this revert to a linear function. Default: 20 |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Softplus.png |
| |
| Examples:: |
| |
| >>> m = nn.Softplus() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['beta', 'threshold'] |
| |
| def __init__(self, beta=1, threshold=20): |
| super(Softplus, self).__init__() |
| self.beta = beta |
| self.threshold = threshold |
| |
| def forward(self, input): |
| return F.softplus(input, self.beta, self.threshold) |
| |
| def extra_repr(self): |
| return 'beta={}, threshold={}'.format(self.beta, self.threshold) |
| |
| |
| class Softshrink(Module): |
| r"""Applies the soft shrinkage function elementwise: |
| |
| .. math:: |
| \text{SoftShrinkage}(x) = |
| \begin{cases} |
| x - \lambda, & \text{ if } x > \lambda \\ |
| x + \lambda, & \text{ if } x < -\lambda \\ |
| 0, & \text{ otherwise } |
| \end{cases} |
| |
| Args: |
| lambd: the :math:`\lambda` value for the Softshrink formulation. Default: 0.5 |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Softshrink.png |
| |
| Examples:: |
| |
| >>> m = nn.Softshrink() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['lambd'] |
| |
| def __init__(self, lambd=0.5): |
| super(Softshrink, self).__init__() |
| self.lambd = lambd |
| |
| def forward(self, input): |
| return F.softshrink(input, self.lambd) |
| |
| def extra_repr(self): |
| return str(self.lambd) |
| |
| |
| class MultiheadAttention(Module): |
| r"""Allows the model to jointly attend to information |
| from different representation subspaces. |
| See reference: Attention Is All You Need |
| |
| .. math:: |
| \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O |
| \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) |
| |
| Args: |
| embed_dim: total dimension of the model. |
| num_heads: parallel attention heads. |
| dropout: a Dropout layer on attn_output_weights. Default: 0.0. |
| bias: add bias as module parameter. Default: True. |
| add_bias_kv: add bias to the key and value sequences at dim=0. |
| add_zero_attn: add a new batch of zeros to the key and |
| value sequences at dim=1. |
| kdim: total number of features in key. Default: None. |
| vdim: total number of features in key. Default: None. |
| |
| Note: if kdim and vdim are None, they will be set to embed_dim such that |
| query, key, and value have the same number of features. |
| |
| Examples:: |
| |
| >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) |
| >>> attn_output, attn_output_weights = multihead_attn(query, key, value) |
| """ |
| |
| def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): |
| super(MultiheadAttention, self).__init__() |
| self.embed_dim = embed_dim |
| self.kdim = kdim if kdim is not None else embed_dim |
| self.vdim = vdim if vdim is not None else embed_dim |
| self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim |
| |
| self.num_heads = num_heads |
| self.dropout = dropout |
| self.head_dim = embed_dim // num_heads |
| assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" |
| |
| self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) |
| |
| if self._qkv_same_embed_dim is False: |
| self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) |
| self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) |
| self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) |
| |
| if bias: |
| self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) |
| else: |
| self.register_parameter('in_proj_bias', None) |
| self.out_proj = Linear(embed_dim, embed_dim, bias=bias) |
| |
| if add_bias_kv: |
| self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) |
| self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) |
| else: |
| self.bias_k = self.bias_v = None |
| |
| self.add_zero_attn = add_zero_attn |
| |
| self._reset_parameters() |
| |
| def _reset_parameters(self): |
| if self._qkv_same_embed_dim: |
| xavier_uniform_(self.in_proj_weight) |
| else: |
| xavier_uniform_(self.q_proj_weight) |
| xavier_uniform_(self.k_proj_weight) |
| xavier_uniform_(self.v_proj_weight) |
| |
| if self.in_proj_bias is not None: |
| constant_(self.in_proj_bias, 0.) |
| constant_(self.out_proj.bias, 0.) |
| if self.bias_k is not None: |
| xavier_normal_(self.bias_k) |
| if self.bias_v is not None: |
| xavier_normal_(self.bias_v) |
| |
| def forward(self, query, key, value, key_padding_mask=None, |
| need_weights=True, attn_mask=None): |
| r""" |
| Args: |
| query, key, value: map a query and a set of key-value pairs to an output. |
| See "Attention Is All You Need" for more details. |
| key_padding_mask: if provided, specified padding elements in the key will |
| be ignored by the attention. This is an binary mask. When the value is True, |
| the corresponding value on the attention layer will be filled with -inf. |
| need_weights: output attn_output_weights. |
| attn_mask: mask that prevents attention to certain positions. This is an additive mask |
| (i.e. the values will be added to the attention layer). |
| |
| Shape: |
| - Inputs: |
| - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is |
| the embedding dimension. |
| - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is |
| the embedding dimension. |
| - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is |
| the embedding dimension. |
| - key_padding_mask: :math:`(N, S)`, ByteTensor, where N is the batch size, S is the source sequence length. |
| - attn_mask: :math:`(L, S)` where L is the target sequence length, S is the source sequence length. |
| |
| - Outputs: |
| - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, |
| E is the embedding dimension. |
| - attn_output_weights: :math:`(N, L, S)` where N is the batch size, |
| L is the target sequence length, S is the source sequence length. |
| """ |
| if hasattr(self, '_qkv_same_embed_dim') and self._qkv_same_embed_dim is False: |
| return F.multi_head_attention_forward( |
| query, key, value, self.embed_dim, self.num_heads, |
| self.in_proj_weight, self.in_proj_bias, |
| self.bias_k, self.bias_v, self.add_zero_attn, |
| self.dropout, self.out_proj.weight, self.out_proj.bias, |
| training=self.training, |
| key_padding_mask=key_padding_mask, need_weights=need_weights, |
| attn_mask=attn_mask, use_separate_proj_weight=True, |
| q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, |
| v_proj_weight=self.v_proj_weight) |
| else: |
| if not hasattr(self, '_qkv_same_embed_dim'): |
| warnings.warn('A new version of MultiheadAttention module has been implemented. \ |
| Please re-train your model with the new module', |
| UserWarning) |
| |
| return F.multi_head_attention_forward( |
| query, key, value, self.embed_dim, self.num_heads, |
| self.in_proj_weight, self.in_proj_bias, |
| self.bias_k, self.bias_v, self.add_zero_attn, |
| self.dropout, self.out_proj.weight, self.out_proj.bias, |
| training=self.training, |
| key_padding_mask=key_padding_mask, need_weights=need_weights, |
| attn_mask=attn_mask) |
| |
| |
| class PReLU(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{PReLU}(x) = \max(0,x) + a * \min(0,x) |
| |
| or |
| |
| .. math:: |
| \text{PReLU}(x) = |
| \begin{cases} |
| x, & \text{ if } x \geq 0 \\ |
| ax, & \text{ otherwise } |
| \end{cases} |
| |
| Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single |
| parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`, |
| a separate :math:`a` is used for each input channel. |
| |
| |
| .. note:: |
| weight decay should not be used when learning :math:`a` for good performance. |
| |
| .. note:: |
| Channel dim is the 2nd dim of input. When input has dims < 2, then there is |
| no channel dim and the number of channels = 1. |
| |
| Args: |
| num_parameters (int): number of :math:`a` to learn. |
| Although it takes an int as input, there is only two values are legitimate: |
| 1, or the number of channels at input. Default: 1 |
| init (float): the initial value of :math:`a`. Default: 0.25 |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Attributes: |
| weight (Tensor): the learnable weights of shape (:attr:`num_parameters`). |
| |
| .. image:: scripts/activation_images/PReLU.png |
| |
| Examples:: |
| |
| >>> m = nn.PReLU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['num_parameters'] |
| |
| def __init__(self, num_parameters=1, init=0.25): |
| self.num_parameters = num_parameters |
| super(PReLU, self).__init__() |
| self.weight = Parameter(torch.Tensor(num_parameters).fill_(init)) |
| |
| def forward(self, input): |
| return F.prelu(input, self.weight) |
| |
| def extra_repr(self): |
| return 'num_parameters={}'.format(self.num_parameters) |
| |
| |
| class Softsign(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{SoftSign}(x) = \frac{x}{ 1 + |x|} |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Softsign.png |
| |
| Examples:: |
| |
| >>> m = nn.Softsign() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| def forward(self, input): |
| return F.softsign(input) |
| |
| |
| class Tanhshrink(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{Tanhshrink}(x) = x - \text{Tanh}(x) |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Tanhshrink.png |
| |
| Examples:: |
| |
| >>> m = nn.Tanhshrink() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| def forward(self, input): |
| return F.tanhshrink(input) |
| |
| |
| class Softmin(Module): |
| r"""Applies the Softmin function to an n-dimensional input Tensor |
| rescaling them so that the elements of the n-dimensional output Tensor |
| lie in the range `[0, 1]` and sum to 1. |
| |
| Softmin is defined as: |
| |
| .. math:: |
| \text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)} |
| |
| Shape: |
| - Input: :math:`(*)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(*)`, same shape as the input |
| |
| Arguments: |
| dim (int): A dimension along which Softmin will be computed (so every slice |
| along dim will sum to 1). |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input, with |
| values in the range [0, 1] |
| |
| Examples:: |
| |
| >>> m = nn.Softmin() |
| >>> input = torch.randn(2, 3) |
| >>> output = m(input) |
| """ |
| __constants__ = ['dim'] |
| |
| def __init__(self, dim=None): |
| super(Softmin, self).__init__() |
| self.dim = dim |
| |
| def forward(self, input): |
| return F.softmin(input, self.dim, _stacklevel=5) |
| |
| |
| class Softmax(Module): |
| r"""Applies the Softmax function to an n-dimensional input Tensor |
| rescaling them so that the elements of the n-dimensional output Tensor |
| lie in the range [0,1] and sum to 1. |
| |
| Softmax is defined as: |
| |
| .. math:: |
| \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} |
| |
| Shape: |
| - Input: :math:`(*)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(*)`, same shape as the input |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [0, 1] |
| |
| Arguments: |
| dim (int): A dimension along which Softmax will be computed (so every slice |
| along dim will sum to 1). |
| |
| .. note:: |
| This module doesn't work directly with NLLLoss, |
| which expects the Log to be computed between the Softmax and itself. |
| Use `LogSoftmax` instead (it's faster and has better numerical properties). |
| |
| Examples:: |
| |
| >>> m = nn.Softmax(dim=1) |
| >>> input = torch.randn(2, 3) |
| >>> output = m(input) |
| """ |
| __constants__ = ['dim'] |
| |
| def __init__(self, dim=None): |
| super(Softmax, self).__init__() |
| self.dim = dim |
| |
| def __setstate__(self, state): |
| self.__dict__.update(state) |
| if not hasattr(self, 'dim'): |
| self.dim = None |
| |
| def forward(self, input): |
| return F.softmax(input, self.dim, _stacklevel=5) |
| |
| def extra_repr(self): |
| return 'dim={dim}'.format(dim=self.dim) |
| |
| |
| class Softmax2d(Module): |
| r"""Applies SoftMax over features to each spatial location. |
| |
| When given an image of ``Channels x Height x Width``, it will |
| apply `Softmax` to each location :math:`(Channels, h_i, w_j)` |
| |
| Shape: |
| - Input: :math:`(N, C, H, W)` |
| - Output: :math:`(N, C, H, W)` (same shape as input) |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [0, 1] |
| |
| Examples:: |
| |
| >>> m = nn.Softmax2d() |
| >>> # you softmax over the 2nd dimension |
| >>> input = torch.randn(2, 3, 12, 13) |
| >>> output = m(input) |
| """ |
| |
| def forward(self, input): |
| assert input.dim() == 4, 'Softmax2d requires a 4D tensor as input' |
| return F.softmax(input, 1, _stacklevel=5) |
| |
| |
| class LogSoftmax(Module): |
| r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional |
| input Tensor. The LogSoftmax formulation can be simplified as: |
| |
| .. math:: |
| \text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right) |
| |
| Shape: |
| - Input: :math:`(*)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(*)`, same shape as the input |
| |
| Arguments: |
| dim (int): A dimension along which LogSoftmax will be computed. |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [-inf, 0) |
| |
| Examples:: |
| |
| >>> m = nn.LogSoftmax() |
| >>> input = torch.randn(2, 3) |
| >>> output = m(input) |
| """ |
| __constants__ = ['dim'] |
| |
| def __init__(self, dim=None): |
| super(LogSoftmax, self).__init__() |
| self.dim = dim |
| |
| def __setstate__(self, state): |
| self.__dict__.update(state) |
| if not hasattr(self, 'dim'): |
| self.dim = None |
| |
| def forward(self, input): |
| return F.log_softmax(input, self.dim, _stacklevel=5) |