| import unittest |
| import torch |
| import torch.utils.cpp_extension |
| |
| import onnx |
| import caffe2.python.onnx.backend as c2 |
| |
| import numpy as np |
| |
| from test_pytorch_onnx_caffe2 import do_export |
| |
| class TestCustomOps(unittest.TestCase): |
| |
| def test_custom_add(self): |
| op_source = """ |
| #include <torch/script.h> |
| |
| torch::Tensor custom_add(torch::Tensor self, torch::Tensor other) { |
| return self + other; |
| } |
| |
| static auto registry = |
| torch::jit::RegisterOperators("custom_namespace::custom_add", &custom_add); |
| """ |
| |
| torch.utils.cpp_extension.load_inline( |
| name="custom_add", |
| cpp_sources=op_source, |
| is_python_module=False, |
| verbose=True, |
| ) |
| |
| class CustomAddModel(torch.nn.Module): |
| def forward(self, a, b): |
| return torch.ops.custom_namespace.custom_add(a, b) |
| |
| def symbolic_custom_add(g, self, other): |
| return g.op('Add', self, other) |
| |
| from torch.onnx import register_custom_op_symbolic |
| register_custom_op_symbolic('custom_namespace::custom_add', symbolic_custom_add, 9) |
| |
| x = torch.randn(2, 3, 4, requires_grad=False) |
| y = torch.randn(2, 3, 4, requires_grad=False) |
| |
| model = CustomAddModel() |
| onnxir, _ = do_export(model, (x, y)) |
| onnx_model = onnx.ModelProto.FromString(onnxir) |
| prepared = c2.prepare(onnx_model) |
| caffe2_out = prepared.run(inputs=[x.cpu().numpy(), y.cpu().numpy()]) |
| np.testing.assert_array_equal(caffe2_out[0], model(x, y).cpu().numpy()) |
| |
| |
| if __name__ == '__main__': |
| unittest.main() |