blob: 22dd8b80bafdec9f726a531d466d476a4054dc33 [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import itertools
import random
import os
"""Performance microbenchmarks's utils.
This module contains utilities for writing microbenchmark tests.
"""
def shape_to_string(shape):
return ', '.join([str(x) for x in shape])
def numpy_random(dtype, *shapes):
""" Return a random numpy tensor of the provided dtype.
Args:
shapes: int or a sequence of ints to defining the shapes of the tensor
dtype: use the dtypes from numpy
(https://docs.scipy.org/doc/numpy/user/basics.types.html)
Return:
numpy tensor of dtype
"""
# TODO: consider more complex/custom dynamic ranges for
# comprehensive test coverage.
return np.random.rand(*shapes).astype(dtype)
def set_omp_threads(num_threads):
existing_value = os.environ.get('OMP_NUM_THREADS', '')
if existing_value != '':
print("Overwriting existing OMP_NUM_THREADS value: {}; Setting it to {}.".format(
existing_value, num_threads))
os.environ["OMP_NUM_THREADS"] = str(num_threads)
def set_mkl_threads(num_threads):
existing_value = os.environ.get('MKL_NUM_THREADS', '')
if existing_value != '':
print("Overwriting existing MKL_NUM_THREADS value: {}; Setting it to {}.".format(
existing_value, num_threads))
os.environ["MKL_NUM_THREADS"] = str(num_threads)
def cross_product(*inputs):
"""
Return a list of cartesian product of input iterables.
For example, cross_product(A, B) returns ((x,y) for x in A for y in B).
"""
return (list(itertools.product(*inputs)))
def get_n_rand_nums(min_val, max_val, n):
random.seed((1 << 32) - 1)
return random.sample(range(min_val, max_val), n)
def generate_configs(**configs):
"""
Given configs from users, we want to generate different combinations of
those configs
For example, given M = ((1, 2), N = (4, 5)) and sample_func being cross_product,
we will generate (({'M': 1}, {'N' : 4}),
({'M': 1}, {'N' : 5}),
({'M': 2}, {'N' : 4}),
({'M': 2}, {'N' : 5}))
"""
assert 'sample_func' in configs, "Missing sample_func to generat configs"
result = []
for key, values in configs.items():
if key == 'sample_func':
continue
tmp_result = []
for value in values:
tmp_result.append({key : value})
result.append(tmp_result)
results = configs['sample_func'](*result)
return results
def cross_product_configs(**configs):
"""
Given configs from users, we want to generate different combinations of
those configs
For example, given M = ((1, 2), N = (4, 5)),
we will generate (({'M': 1}, {'N' : 4}),
({'M': 1}, {'N' : 5}),
({'M': 2}, {'N' : 4}),
({'M': 2}, {'N' : 5}))
"""
configs_attrs_list = []
for key, values in configs.items():
tmp_results = [{key : value} for value in values]
configs_attrs_list.append(tmp_results)
# TODO(mingzhe0908) remove the conversion to list.
# itertools.product produces an iterator that produces element on the fly
# while converting to a list produces everything at the same time.
generated_configs = list(itertools.product(*configs_attrs_list))
return generated_configs
def config_list(**configs):
"""
Take specific inputs from users
For example, given
attrs = [
[1, 2],
[4, 5],
]
attr_names = ["M", "N"]
we will generate (({'M': 1}, {'N' : 2}),
({'M': 4}, {'N' : 5}))
"""
generated_configs = []
if "attrs" not in configs:
raise ValueError("Missing attrs in configs")
for inputs in configs["attrs"]:
tmp_result = [{configs["attr_names"][i] : input_value}
for i, input_value in enumerate(inputs)]
# TODO(mingzhe0908):
# If multiple "tags" were provided, do they get concat?
# If a config has both ["short", "medium"], it should match
# both "short" and "medium" tag-filter?
tmp_result.append({"tags" : '_'.join(configs["tags"])})
generated_configs.append(tmp_result)
return generated_configs
def op_list(**configs):
"""Generate a list of ops organized in a specific format.
It takes two parameters which are "attr_names" and "attr".
attrs stores the name and function of operators.
Args:
configs: key-value pairs including the name and function of
operators. attrs and attr_names must be present in configs.
Return:
a sequence of dictionaries which stores the name and function
of ops in a specifal format
Example:
attrs = [
["abs", torch.abs],
["abs_", torch.abs_],
]
attr_names = ["op_name", "op"].
With those two examples,
we will generate (({"op_name": "abs"}, {"op" : torch.abs}),
({"op_name": "abs_"}, {"op" : torch.abs_}))
"""
generated_configs = []
if "attrs" not in configs:
raise ValueError("Missing attrs in configs")
for inputs in configs["attrs"]:
tmp_result = {configs["attr_names"][i] : input_value
for i, input_value in enumerate(inputs)}
generated_configs.append(tmp_result)
return generated_configs
def is_caffe2_enabled(framework_arg):
return 'Caffe2' in framework_arg
def is_pytorch_enabled(framework_arg):
return 'PyTorch' in framework_arg
def process_arg_list(arg_list):
if arg_list == 'None':
return None
return [fr.strip() for fr in arg_list.split(',') if len(fr.strip()) > 0]
class SkipInputShape(Exception):
"""Used when a test case should be skipped"""
pass