| #include <c10/cuda/CUDACachingAllocator.h> |
| |
| #include <c10/cuda/CUDAGuard.h> |
| #include <c10/cuda/CUDAException.h> |
| #include <c10/cuda/CUDAFunctions.h> |
| #include <c10/util/UniqueVoidPtr.h> |
| |
| #include <cuda_runtime_api.h> |
| #include <algorithm> |
| #include <bitset> |
| #include <deque> |
| #include <iterator> |
| #include <map> |
| #include <memory> |
| #include <mutex> |
| #include <set> |
| #include <unordered_map> |
| #include <unordered_set> |
| #include <vector> |
| |
| namespace c10 { |
| |
| C10_DEFINE_REGISTRY(FreeCudaMemoryCallbacksRegistry, FreeMemoryCallback); |
| |
| namespace cuda { |
| namespace CUDACachingAllocator { |
| |
| // |
| // Yet another caching allocator for CUDA device allocations. |
| // |
| // - Allocations are associated with a stream. Once freed, blocks can be |
| // re-allocated on the same stream, but not on any other stream. |
| // - The allocator attempts to find the smallest cached block that will fit the |
| // requested size. If the block is larger than the requested size, it may be |
| // split. If no block is found, the allocator will delegate to cudaMalloc. |
| // - If the cudaMalloc fails, the allocator will free all cached blocks that |
| // are not split and retry the allocation. |
| // - Large (>1MB) and small allocations are stored in separate pools. |
| // Small requests are packed into 2MB buffers. Large requests will use the |
| // smallest available free block or allocate a new block using cudaMalloc. |
| // To reduce fragmentation, requests between 1MB and 10MB will allocate and |
| // split a 20MB block, if no free block of sufficient size is available. |
| // |
| // With this allocator, allocations and frees should logically be considered |
| // "usages" of the memory segment associated with streams, just like kernel |
| // launches. The programmer must insert the proper synchronization if memory |
| // segments are used from multiple streams. |
| // |
| // The library provides a recordStream() function to help insert the correct |
| // synchronization when allocations are used on multiple streams. This will |
| // ensure that the block is not reused before each recorded stream completes |
| // work. |
| // |
| |
| |
| namespace { |
| |
| using stream_set = std::unordered_set<cuda::CUDAStream>; |
| |
| constexpr size_t kMinBlockSize = 512; // all sizes are rounded to at least 512 bytes |
| constexpr size_t kSmallSize = 1048576; // largest "small" allocation is 1 MiB |
| constexpr size_t kSmallBuffer = 2097152; // "small" allocations are packed in 2 MiB blocks |
| constexpr size_t kLargeBuffer = 20971520; // "large" allocations may be packed in 20 MiB blocks |
| constexpr size_t kMinLargeAlloc = 10485760; // allocations between 1 and 10 MiB may use kLargeBuffer |
| constexpr size_t kRoundLarge = 2097152; // round up large allocs to 2 MiB |
| |
| typedef std::bitset<static_cast<size_t>(StatType::NUM_TYPES)> StatTypes; |
| |
| void update_stat(Stat& stat, int64_t amount) { |
| stat.current += amount; |
| |
| TORCH_INTERNAL_ASSERT(stat.current >= 0, "Negative tracked stat in CUDA allocator (likely logic error)."); |
| |
| stat.peak = std::max(stat.current, stat.peak); |
| if (amount > 0) { |
| stat.allocated += amount; |
| } |
| if (amount < 0) { |
| stat.freed += -amount; |
| } |
| } |
| |
| void reset_accumulated_stat(Stat& stat) { |
| stat.allocated = 0; |
| stat.freed = 0; |
| } |
| |
| void reset_peak_stat(Stat& stat) { |
| stat.peak = stat.current; |
| } |
| |
| void update_stat_array(StatArray& stat_array, int64_t amount, const StatTypes& stat_types) { |
| for (size_t stat_type = 0; stat_type < stat_types.size(); ++stat_type) { |
| if (stat_types[stat_type]) { |
| update_stat(stat_array[stat_type], amount); |
| } |
| } |
| } |
| |
| struct Block; |
| typedef bool (*Comparison)(const Block*, const Block*); |
| typedef std::set<Block*, Comparison> BlockPool; |
| |
| struct Block { |
| int device; // gpu |
| cudaStream_t stream; // allocation stream |
| stream_set stream_uses; // streams on which the block was used |
| size_t size; // block size in bytes |
| BlockPool* pool; // owning memory pool |
| void* ptr; // memory address |
| bool allocated; // in-use flag |
| Block* prev; // prev block if split from a larger allocation |
| Block* next; // next block if split from a larger allocation |
| int event_count; // number of outstanding CUDA events |
| |
| Block(int device, cudaStream_t stream, size_t size, BlockPool* pool, void* ptr) : |
| device(device), stream(stream), stream_uses(), size(size), pool(pool), |
| ptr(ptr), allocated(0), prev(nullptr), next(nullptr), event_count(0) { } |
| |
| // constructor for search key |
| Block(int device, cudaStream_t stream, size_t size) : |
| device(device), stream(stream), stream_uses(), size(size), pool(nullptr), |
| ptr(nullptr), allocated(0), prev(nullptr), next(nullptr), event_count(0) { } |
| |
| bool is_split() const { |
| return (prev != nullptr) || (next != nullptr); |
| } |
| }; |
| |
| static bool BlockComparator(const Block* a, const Block* b) |
| { |
| if (a->stream != b->stream) { |
| return (uintptr_t)a->stream < (uintptr_t)b->stream; |
| } |
| if (a->size != b->size) { |
| return a->size < b->size; |
| } |
| return (uintptr_t)a->ptr < (uintptr_t)b->ptr; |
| } |
| |
| static std::string format_size(uint64_t size) { |
| std::ostringstream os; |
| os.precision(2); |
| os << std::fixed; |
| if (size <= 1024) { |
| os << size << " bytes"; |
| } else if (size <= 1048576) { |
| os << (size / 1024.0); |
| os << " KiB"; |
| } else if (size <= 1073741824ULL) { |
| os << size / 1048576.0; |
| os << " MiB"; |
| } else { |
| os << size / 1073741824.0; |
| os << " GiB"; |
| } |
| return os.str(); |
| } |
| |
| struct AllocParams { |
| AllocParams(int device, size_t size, cudaStream_t stream, BlockPool* pool, size_t alloc_size, |
| DeviceStats& stats) : |
| search_key(device, stream, size), |
| pool(pool), |
| alloc_size(alloc_size), |
| block(nullptr), |
| err(cudaSuccess) {} |
| |
| int device() { return search_key.device; } |
| cudaStream_t stream() { return search_key.stream; } |
| size_t size() { return search_key.size; } |
| |
| Block search_key; |
| BlockPool* pool; |
| size_t alloc_size; |
| Block* block; |
| StatTypes stat_types; |
| cudaError_t err; |
| }; |
| |
| } // namespace |
| |
| class DeviceCachingAllocator { |
| |
| private: |
| |
| // lock around all operations |
| mutable std::recursive_mutex mutex; |
| |
| // device statistics |
| DeviceStats stats; |
| |
| // unallocated cached blocks larger than 1 MB |
| BlockPool large_blocks; |
| |
| // unallocated cached blocks 1 MB or smaller |
| BlockPool small_blocks; |
| |
| // allocated or in use by a stream |
| std::unordered_set<Block*> active_blocks; |
| |
| // outstanding cuda events |
| std::deque<std::pair<cudaEvent_t, Block*>> cuda_events; |
| |
| // record used memory. |
| size_t total_allocated_memory = 0; |
| |
| size_t allowed_memory_maximum = 0; |
| |
| bool set_fraction = false; |
| |
| public: |
| |
| DeviceCachingAllocator() : |
| large_blocks(BlockComparator), |
| small_blocks(BlockComparator) {} |
| |
| // All public methods (except the above) acquire the allocator mutex. |
| // Thus, do not call a public method from another public method. |
| |
| Block* malloc(int device, size_t size, cudaStream_t stream) |
| { |
| std::unique_lock<std::recursive_mutex> lock(mutex); |
| |
| // process outstanding cudaEvents |
| process_events(); |
| |
| size = round_size(size); |
| auto& pool = get_pool(size); |
| const size_t alloc_size = get_allocation_size(size); |
| AllocParams params(device, size, stream, &pool, alloc_size, stats); |
| params.stat_types[static_cast<size_t>(StatType::AGGREGATE)] = true; |
| params.stat_types[static_cast<size_t>(get_stat_type_for_pool(pool))] = true; |
| |
| bool block_found = |
| // Search pool |
| get_free_block(params) |
| // Trigger callbacks and retry search |
| || (trigger_free_memory_callbacks(params) && get_free_block(params)) |
| // Attempt allocate |
| || alloc_block(params, false) |
| // Free all non-split cached blocks and retry alloc. |
| || (free_cached_blocks() && alloc_block(params, true)); |
| |
| TORCH_INTERNAL_ASSERT((!block_found && params.err != cudaSuccess) || params.block); |
| if (!block_found) { |
| if (params.err == cudaErrorMemoryAllocation) { |
| size_t device_free; |
| size_t device_total; |
| C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total)); |
| std::string allowed_info; |
| |
| if (set_fraction) { |
| allowed_info = format_size(allowed_memory_maximum) + " allowed; "; |
| } |
| |
| stats.num_ooms += 1; |
| |
| // "total capacity": total global memory on GPU |
| // "allowed": memory is allowed to use, which set by fraction. |
| // "already allocated": memory allocated by the program using the |
| // caching allocator |
| // "free": free memory as reported by the CUDA API |
| // "cached": memory held by the allocator but not used by the program |
| // |
| // The "allocated" amount does not include memory allocated outside |
| // of the caching allocator, such as memory allocated by other programs |
| // or memory held by the driver. |
| // |
| // The sum of "allocated" + "free" + "cached" may be less than the |
| // total capacity due to memory held by the driver and usage by other |
| // programs. |
| // |
| // Note that at this point free_cached_blocks has already returned all |
| // possible "cached" memory to the driver. The only remaining "cached" |
| // memory is split from a larger block that is partially in-use. |
| TORCH_CHECK_WITH(CUDAOutOfMemoryError, false, |
| "CUDA out of memory. Tried to allocate ", format_size(alloc_size), |
| " (GPU ", device, "; ", |
| format_size(device_total), " total capacity; ", |
| format_size(stats.allocated_bytes[static_cast<size_t>(StatType::AGGREGATE)].current), |
| " already allocated; ", |
| format_size(device_free), " free; ", |
| allowed_info, |
| format_size(stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)].current), |
| " reserved in total by PyTorch)"); |
| } else { |
| C10_CUDA_CHECK(params.err); |
| } |
| } |
| |
| Block* block = params.block; |
| Block* remaining = nullptr; |
| TORCH_INTERNAL_ASSERT(block); |
| |
| const bool already_split = block->is_split(); |
| if (should_split(block, size)) { |
| remaining = block; |
| |
| block = new Block(device, stream, size, &pool, block->ptr); |
| block->prev = remaining->prev; |
| if (block->prev) { |
| block->prev->next = block; |
| } |
| block->next = remaining; |
| |
| remaining->prev = block; |
| remaining->ptr = static_cast<char*>(remaining->ptr) + size; |
| remaining->size -= size; |
| pool.insert(remaining); |
| |
| if (already_split) { |
| // An already-split inactive block is being shrunk by size bytes. |
| update_stat_array(stats.inactive_split_bytes, -block->size, params.stat_types); |
| } else { |
| // A new split inactive block is being created from a previously unsplit block, |
| // size remaining->size bytes. |
| update_stat_array(stats.inactive_split_bytes, remaining->size, params.stat_types); |
| update_stat_array(stats.inactive_split, 1, params.stat_types); |
| } |
| } else if (already_split) { |
| // An already-split block is becoming active |
| update_stat_array(stats.inactive_split_bytes, -block->size, params.stat_types); |
| update_stat_array(stats.inactive_split, -1, params.stat_types); |
| } |
| |
| block->allocated = true; |
| active_blocks.insert(block); |
| |
| c10::reportMemoryUsageToProfiler( |
| block, block->size, c10::Device(c10::DeviceType::CUDA, device)); |
| |
| update_stat_array(stats.allocation, 1, params.stat_types); |
| update_stat_array(stats.allocated_bytes, block->size, params.stat_types); |
| update_stat_array(stats.active, 1, params.stat_types); |
| update_stat_array(stats.active_bytes, block->size, params.stat_types); |
| |
| return block; |
| } |
| |
| void free(Block* block) |
| { |
| std::lock_guard<std::recursive_mutex> lock(mutex); |
| |
| block->allocated = false; |
| |
| c10::reportMemoryUsageToProfiler( |
| block, -block->size, c10::Device(c10::DeviceType::CUDA, block->device)); |
| |
| StatTypes stat_types; |
| stat_types[static_cast<size_t>(StatType::AGGREGATE)] = true; |
| stat_types[static_cast<size_t>(get_stat_type_for_pool(*(block->pool)))] = true; |
| update_stat_array(stats.allocation, -1, {stat_types}); |
| update_stat_array(stats.allocated_bytes, -block->size, {stat_types}); |
| |
| if (!block->stream_uses.empty()) { |
| insert_events(block); |
| } else { |
| free_block(block); |
| } |
| } |
| |
| void* getBaseAllocation(Block* block, size_t* outSize) { |
| std::lock_guard<std::recursive_mutex> lock(mutex); |
| while (block->prev) { |
| block = block->prev; |
| } |
| void *basePtr = block->ptr; |
| if (outSize) { |
| size_t size = 0; |
| while (block) { |
| size += block->size; |
| block = block->next; |
| } |
| *outSize = size; |
| } |
| return basePtr; |
| } |
| |
| void recordStream(Block* block, cuda::CUDAStream stream) { |
| std::lock_guard<std::recursive_mutex> lock(mutex); |
| if (stream.stream() == block->stream) { |
| // ignore uses on the allocation stream, since those don't require any |
| // special synchronization |
| return; |
| } |
| block->stream_uses.insert(stream); |
| } |
| |
| /** set memory fraction to limit maximum allocated memory **/ |
| void setMemoryFraction(double fraction) { |
| size_t device_free; |
| size_t device_total; |
| C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total)); |
| allowed_memory_maximum = static_cast<size_t>(fraction * device_total); |
| set_fraction = true; |
| } |
| |
| /** returns cached blocks to the system allocator **/ |
| void emptyCache() { |
| std::lock_guard<std::recursive_mutex> lock(mutex); |
| free_cached_blocks(); |
| } |
| |
| /** Retrieves info (total size + largest block) of the memory cache **/ |
| void cacheInfo(size_t* total, size_t* largest) |
| { |
| std::lock_guard<std::recursive_mutex> lock(mutex); |
| if (*largest == 0) { // make an initial guess if a zero *largest is passed in |
| size_t tmp_bytes; |
| cudaMemGetInfo(largest, // Use free memory as an optimistic initial guess of *largest |
| &tmp_bytes); |
| } |
| cache_info_aux(large_blocks, total, largest); |
| cache_info_aux(small_blocks, total, largest); |
| } |
| |
| /** Returns a copy of the memory allocator stats **/ |
| DeviceStats getStats() { |
| std::lock_guard<std::recursive_mutex> lock(mutex); |
| return stats; |
| } |
| |
| /** Resets the historical accumulation stats for the device **/ |
| void resetAccumulatedStats() { |
| std::lock_guard<std::recursive_mutex> lock(mutex); |
| |
| for (size_t statType = 0; statType < static_cast<size_t>(StatType::NUM_TYPES); ++statType) { |
| reset_accumulated_stat(stats.allocation[statType]); |
| reset_accumulated_stat(stats.segment[statType]); |
| reset_accumulated_stat(stats.active[statType]); |
| reset_accumulated_stat(stats.inactive_split[statType]); |
| reset_accumulated_stat(stats.allocated_bytes[statType]); |
| reset_accumulated_stat(stats.reserved_bytes[statType]); |
| reset_accumulated_stat(stats.active_bytes[statType]); |
| reset_accumulated_stat(stats.inactive_split_bytes[statType]); |
| } |
| |
| stats.num_alloc_retries = 0; |
| stats.num_ooms = 0; |
| } |
| |
| /** Resets the historical peak stats for the device **/ |
| void resetPeakStats() { |
| std::lock_guard<std::recursive_mutex> lock(mutex); |
| |
| for (size_t statType = 0; statType < static_cast<size_t>(StatType::NUM_TYPES); ++statType) { |
| reset_peak_stat(stats.allocation[statType]); |
| reset_peak_stat(stats.segment[statType]); |
| reset_peak_stat(stats.active[statType]); |
| reset_peak_stat(stats.inactive_split[statType]); |
| reset_peak_stat(stats.allocated_bytes[statType]); |
| reset_peak_stat(stats.reserved_bytes[statType]); |
| reset_peak_stat(stats.active_bytes[statType]); |
| reset_peak_stat(stats.inactive_split_bytes[statType]); |
| } |
| } |
| |
| /** Dump a complete snapshot of the memory held by the allocator. Potentially VERY expensive. **/ |
| std::vector<SegmentInfo> snapshot() const { |
| std::lock_guard<std::recursive_mutex> lock(mutex); |
| |
| std::vector<SegmentInfo> result; |
| const auto all_blocks = get_all_blocks(); |
| |
| for (const Block* const head_block : all_blocks) { |
| if (head_block->prev != nullptr) { |
| continue; |
| } |
| result.emplace_back(); |
| SegmentInfo& segment_info = result.back(); |
| segment_info.device = head_block->device; |
| segment_info.address = reinterpret_cast<int64_t>(head_block->ptr); |
| segment_info.is_large = (head_block->pool == &large_blocks); |
| |
| const Block* block = head_block; |
| while (block != nullptr) { |
| segment_info.blocks.emplace_back(); |
| BlockInfo& block_info = segment_info.blocks.back(); |
| |
| block_info.size = block->size; |
| block_info.allocated = block->allocated; |
| block_info.active = block->allocated || (block->event_count > 0); |
| |
| segment_info.total_size += block_info.size; |
| if (block_info.allocated) { |
| segment_info.allocated_size += block_info.size; |
| } |
| if (block_info.active) { |
| segment_info.active_size += block_info.size; |
| } |
| |
| block = block->next; |
| } |
| } |
| |
| std::sort(result.begin(), result.end(), [](const SegmentInfo& a, const SegmentInfo& b) { |
| return a.address < b.address; |
| }); |
| |
| return result; |
| } |
| |
| static size_t round_size(size_t size) { |
| if (size < kMinBlockSize) { |
| return kMinBlockSize; |
| } else { |
| return kMinBlockSize * ((size + kMinBlockSize - 1) / kMinBlockSize); |
| } |
| } |
| |
| private: |
| |
| // All private methods do not acquire the allocator mutex. |
| |
| std::vector<const Block*> get_all_blocks() const { |
| std::vector<const Block*> blocks; |
| blocks.insert(blocks.end(), small_blocks.begin(), small_blocks.end()); |
| blocks.insert(blocks.end(), large_blocks.begin(), large_blocks.end()); |
| blocks.insert(blocks.end(), active_blocks.begin(), active_blocks.end()); |
| return blocks; |
| } |
| |
| /** moves a block into a pool of cached free blocks */ |
| void free_block(Block* block) |
| { |
| TORCH_INTERNAL_ASSERT(!block->allocated && block->event_count == 0); |
| |
| size_t original_block_size = block->size; |
| |
| auto& pool = *block->pool; |
| int64_t net_change_inactive_split_blocks = 0; |
| int64_t net_change_inactive_split_size = 0; |
| |
| const std::array<Block*, 2> merge_candidates = {block->prev, block->next}; |
| for (Block* merge_candidate : merge_candidates) { |
| const int64_t subsumed_size = try_merge_blocks(block, merge_candidate, pool); |
| if (subsumed_size > 0) { |
| net_change_inactive_split_blocks -= 1; |
| net_change_inactive_split_size -= subsumed_size; |
| } |
| } |
| |
| active_blocks.erase(block); |
| pool.insert(block); |
| |
| if (block->is_split()) { |
| net_change_inactive_split_blocks += 1; |
| net_change_inactive_split_size += block->size; |
| } |
| |
| StatTypes stat_types; |
| stat_types[static_cast<size_t>(StatType::AGGREGATE)] = true; |
| stat_types[static_cast<size_t>(get_stat_type_for_pool(*(block->pool)))] = true; |
| update_stat_array(stats.inactive_split, net_change_inactive_split_blocks, stat_types); |
| update_stat_array(stats.inactive_split_bytes, net_change_inactive_split_size, stat_types); |
| update_stat_array(stats.active, -1, stat_types); |
| update_stat_array(stats.active_bytes, -original_block_size, stat_types); |
| } |
| |
| /** combine previously split blocks. returns the size of the subsumed block, or 0 on failure. */ |
| size_t try_merge_blocks(Block* dst, Block* src, BlockPool& pool) |
| { |
| if (!src || src->allocated || src->event_count > 0) { |
| return 0; |
| } |
| |
| AT_ASSERT(dst->is_split() && src->is_split()); |
| |
| if (dst->prev == src) { |
| dst->ptr = src->ptr; |
| dst->prev = src->prev; |
| if (dst->prev) { |
| dst->prev->next = dst; |
| } |
| } else { |
| dst->next = src->next; |
| if (dst->next) { |
| dst->next->prev = dst; |
| } |
| } |
| |
| const size_t subsumed_size = src->size; |
| dst->size += subsumed_size; |
| pool.erase(src); |
| delete src; |
| |
| return subsumed_size; |
| } |
| |
| BlockPool& get_pool(size_t size) { |
| if (size <= kSmallSize) { |
| return small_blocks; |
| } else { |
| return large_blocks; |
| } |
| } |
| |
| StatType get_stat_type_for_pool(const BlockPool& pool) { |
| if (&pool == &small_blocks) { |
| return StatType::SMALL_POOL; |
| } else if (&pool == &large_blocks) { |
| return StatType::LARGE_POOL; |
| } else { |
| AT_ERROR("get_stat_type_for_pool: invalid pool"); |
| } |
| } |
| |
| bool should_split(const Block* block, size_t size) { |
| size_t remaining = block->size - size; |
| if (block->pool == &small_blocks) { |
| return remaining >= kMinBlockSize; |
| } else if (block->pool == &large_blocks) { |
| return remaining > kSmallSize; |
| } else { |
| AT_ERROR("should_split: invalid pool"); |
| } |
| } |
| |
| static size_t get_allocation_size(size_t size) { |
| if (size <= kSmallSize) { |
| return kSmallBuffer; |
| } else if (size < kMinLargeAlloc) { |
| return kLargeBuffer; |
| } else { |
| return kRoundLarge * ((size + kRoundLarge - 1) / kRoundLarge); |
| } |
| } |
| |
| bool get_free_block(AllocParams& p) { |
| BlockPool& pool = *p.pool; |
| auto it = pool.lower_bound(&p.search_key); |
| if (it == pool.end() || (*it)->stream != p.stream()) |
| return false; |
| p.block = *it; |
| pool.erase(it); |
| return true; |
| } |
| |
| bool trigger_free_memory_callbacks(AllocParams& p) { |
| bool freed_memory = false; |
| for (const auto& name : FreeCudaMemoryCallbacksRegistry()->Keys()) { |
| freed_memory |= |
| FreeCudaMemoryCallbacksRegistry()->Create(name)->Execute(); |
| } |
| return freed_memory; |
| } |
| |
| bool alloc_block(AllocParams& p, bool isRetry) { |
| size_t size = p.alloc_size; |
| void* ptr; |
| |
| if (isRetry) { |
| stats.num_alloc_retries += 1; |
| } |
| if (set_fraction && total_allocated_memory + size > allowed_memory_maximum) { |
| p.err = cudaErrorMemoryAllocation; |
| } else { |
| p.err = cudaMalloc(&ptr, size); |
| } |
| |
| if (p.err != cudaSuccess) { |
| if (!isRetry || p.err == cudaErrorMemoryAllocation) |
| cudaGetLastError(); // clear CUDA error |
| return false; |
| } |
| |
| total_allocated_memory += size; |
| p.block = new Block(p.device(), p.stream(), size, p.pool, (char*)ptr); |
| update_stat_array(stats.segment, 1, p.stat_types); |
| update_stat_array(stats.reserved_bytes, size, p.stat_types); |
| |
| return (p.block != nullptr); |
| } |
| |
| bool free_cached_blocks() |
| { |
| // First ensure that all blocks that can't currently be allocated due to |
| // outstanding events are returned to the pool. |
| synchronize_and_free_events(); |
| |
| // Free all non-split cached blocks |
| free_blocks(large_blocks); |
| free_blocks(small_blocks); |
| return true; |
| } |
| |
| void free_blocks(BlockPool& blocks) |
| { |
| // Frees all non-split blocks |
| auto it = blocks.begin(); |
| while (it != blocks.end()) { |
| Block* block = *it; |
| if (!block->prev && !block->next) { |
| C10_CUDA_CHECK(cudaFree((void*)block->ptr)); |
| total_allocated_memory -= block->size; |
| |
| StatTypes stat_types; |
| stat_types[static_cast<size_t>(StatType::AGGREGATE)] = true; |
| stat_types[static_cast<size_t>(get_stat_type_for_pool(*(block->pool)))] = true; |
| update_stat_array(stats.segment, -1, stat_types); |
| update_stat_array(stats.reserved_bytes, -block->size, stat_types); |
| |
| auto cur = it; |
| ++it; |
| blocks.erase(cur); |
| delete block; |
| } else { |
| ++it; |
| } |
| } |
| } |
| |
| cudaEvent_t create_event_internal() { |
| cudaEvent_t event; |
| C10_CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming)); |
| return event; |
| } |
| |
| void free_event_internal(cudaEvent_t event) { |
| C10_CUDA_CHECK(cudaEventDestroy(event)); |
| } |
| |
| void synchronize_and_free_events() { |
| // Synchronize on outstanding events and then free associated blocks. |
| |
| for (auto& e : cuda_events) { |
| cudaEvent_t event = e.first; |
| Block* block = e.second; |
| |
| C10_CUDA_CHECK(cudaEventSynchronize(event)); |
| free_event_internal(event); |
| |
| block->event_count--; |
| if (block->event_count == 0) { |
| free_block(block); |
| } |
| } |
| |
| cuda_events.clear(); |
| } |
| |
| void insert_events(Block* block) |
| { |
| int prev_device; |
| C10_CUDA_CHECK(cudaGetDevice(&prev_device)); |
| |
| stream_set streams(std::move(block->stream_uses)); |
| AT_ASSERT(block->stream_uses.empty()); |
| for (auto it = streams.begin(); it != streams.end(); ++it) { |
| C10_CUDA_CHECK(cudaSetDevice(it->device_index())); |
| |
| cudaEvent_t event = create_event_internal(); |
| C10_CUDA_CHECK(cudaEventRecord(event, it->stream())); |
| |
| block->event_count++; |
| cuda_events.emplace_back(event, block); |
| } |
| |
| C10_CUDA_CHECK(cudaSetDevice(prev_device)); |
| } |
| |
| void process_events() |
| { |
| // Process outstanding cudaEvents. Events that are completed are removed |
| // from the queue, and the 'event_count' for the corresponding allocation |
| // is decremented. Stops at the first event which has not been completed. |
| // Since events on different devices or streams may occur out of order, |
| // the processing of some events may be delayed. |
| while (!cuda_events.empty()) { |
| auto& e = cuda_events.front(); |
| cudaEvent_t event = e.first; |
| Block* block = e.second; |
| |
| cudaError_t err = cudaEventQuery(event); |
| if (err == cudaErrorNotReady) { |
| // ignore and clear the error if not ready |
| cudaGetLastError(); |
| break; |
| } else if (err != cudaSuccess) { |
| C10_CUDA_CHECK(err); |
| } |
| |
| free_event_internal(event); |
| |
| block->event_count--; |
| if (block->event_count == 0) { |
| free_block(block); |
| } |
| cuda_events.pop_front(); |
| } |
| } |
| |
| // Accumulates sizes of all memory blocks for given device in given pool |
| void cache_info_aux(BlockPool& blocks, size_t* total, size_t* largest) |
| { |
| for (auto it = blocks.begin(); it != blocks.end(); ++it) { |
| size_t blocksize = (*it)->size; |
| *total += blocksize; |
| if (blocksize > *largest) { |
| *largest = blocksize; |
| } |
| } |
| } |
| }; |
| |
| class THCCachingAllocator { |
| |
| private: |
| |
| std::mutex mutex; |
| |
| // allocated blocks by device pointer |
| std::unordered_map<void*, Block*> allocated_blocks; |
| |
| // lock around calls to cudaFree (to prevent deadlocks with NCCL) |
| mutable std::mutex cuda_free_mutex; |
| |
| void add_allocated_block(Block* block) { |
| std::lock_guard<std::mutex> lock(mutex); |
| allocated_blocks[block->ptr] = block; |
| } |
| |
| public: |
| |
| std::vector<std::unique_ptr<DeviceCachingAllocator>> device_allocator; |
| |
| std::mutex* getCudaFreeMutex() const { |
| return &cuda_free_mutex; |
| } |
| |
| Block* get_allocated_block(void *ptr, bool remove=false) { |
| std::lock_guard<std::mutex> lock(mutex); |
| auto it = allocated_blocks.find(ptr); |
| if (it == allocated_blocks.end()) { |
| return nullptr; |
| } |
| Block* block = it->second; |
| if (remove) { |
| allocated_blocks.erase(it); |
| } |
| return block; |
| } |
| |
| void init(int device_count) { |
| int size = device_allocator.size(); |
| if (size < device_count) { |
| device_allocator.resize(device_count); |
| for (int i = size; i < device_count; i++) { |
| device_allocator[i] = std::unique_ptr<DeviceCachingAllocator>(new DeviceCachingAllocator()); |
| } |
| } |
| } |
| |
| /** allocates a block which is safe to use from the provided stream */ |
| void malloc(void** devPtr, int device, size_t size, cudaStream_t stream) { |
| TORCH_INTERNAL_ASSERT( |
| 0 <= device && device < device_allocator.size(), |
| "Allocator not initialized for device ", |
| device, |
| ": did you call init?"); |
| Block* block = device_allocator[device]->malloc(device, size, stream); |
| add_allocated_block(block); |
| *devPtr = (void*)block->ptr; |
| } |
| |
| void free(void* ptr) { |
| if (!ptr) { |
| return; |
| } |
| Block* block = get_allocated_block(ptr, true /* remove */); |
| if (!block) { |
| AT_ERROR("invalid device pointer: ", ptr); |
| } |
| device_allocator[block->device]->free(block); |
| } |
| |
| void setMemoryFraction(double fraction, int device) { |
| TORCH_INTERNAL_ASSERT( |
| 0 <= device && device < device_allocator.size(), |
| "Allocator not initialized for device ", |
| device, |
| ": did you call init?"); |
| TORCH_INTERNAL_ASSERT( |
| 0 <= fraction && fraction <= 1, |
| "invalid fraction:", |
| fraction, |
| ". Please set within (0, 1)."); |
| int activated_device; |
| cudaGetDevice (&activated_device); |
| if (activated_device != device) { |
| cudaSetDevice(device); |
| } |
| device_allocator[device]->setMemoryFraction(fraction); |
| } |
| |
| void emptyCache() { |
| int count = device_allocator.size(); |
| for (int i = 0; i < count; i++) |
| device_allocator[i]->emptyCache(); |
| } |
| |
| void* getBaseAllocation(void* ptr, size_t* outSize) |
| { |
| Block* block = get_allocated_block(ptr); |
| if (!block) { |
| AT_ERROR("invalid device pointer: ", ptr); |
| } |
| return device_allocator[block->device]->getBaseAllocation(block, outSize); |
| } |
| |
| void recordStream(const DataPtr& ptr, cuda::CUDAStream stream) { |
| // Empty tensor's storage().data() might be a null ptr. As there is no |
| // blocks associated with those tensors, it is fine to do nothing here. |
| if (!ptr.get()) { |
| return; |
| } |
| |
| // If a tensor is not allocated by this instance, simply skip |
| // This usually happens when CUDA tensors are shared across processes, |
| // we have implemented reference counting based sharing mechanism to |
| // guarantee tensors won't be accidentally freed by one process while |
| // they are still being used in another |
| if (ptr.get_deleter() != &raw_delete) |
| return; |
| |
| Block* block = get_allocated_block(ptr.get()); |
| // block must not be null reaching here |
| TORCH_INTERNAL_ASSERT(block != nullptr, "No allocated block can be found"); |
| device_allocator[block->device]->recordStream(block, stream); |
| } |
| |
| std::vector<SegmentInfo> snapshot() { |
| std::vector<SegmentInfo> result; |
| int count = device_allocator.size(); |
| for (int i = 0; i < count; i++) { |
| auto snap = device_allocator[i]->snapshot(); |
| result.insert(result.end(), snap.begin(), snap.end()); |
| } |
| |
| return result; |
| } |
| }; |
| |
| THCCachingAllocator caching_allocator; |
| |
| // Returns whether to force all allocations to bypass the caching allocator and |
| // go straight to cudaMalloc. This setting is useful when debugging GPU memory |
| // errors, since the caching allocator foils cuda-memcheck. |
| bool forceUncachedAllocator() { |
| static bool force_uncached = |
| getenv("PYTORCH_NO_CUDA_MEMORY_CACHING") != nullptr; |
| return force_uncached; |
| } |
| |
| static void uncached_delete(void* ptr) { |
| C10_CUDA_CHECK(cudaFree(ptr)); |
| } |
| |
| // NB: I decided not to fold this into THCCachingAllocator, because the latter |
| // has a lot more methods and it wasn't altogether clear that they should |
| // actually be publicly exposed |
| struct CudaCachingAllocator : public Allocator { |
| DataPtr allocate(size_t size) const override { |
| int device; |
| C10_CUDA_CHECK(cudaGetDevice(&device)); |
| void* r = nullptr; |
| if (forceUncachedAllocator()) { |
| C10_CUDA_CHECK(cudaMalloc(&r, size)); |
| return {r, r, &uncached_delete, Device(DeviceType::CUDA, device)}; |
| } |
| if (size != 0) { |
| caching_allocator.malloc(&r, device, size, cuda::getCurrentCUDAStream(device)); |
| } |
| return {r, r, &raw_delete, Device(DeviceType::CUDA, device)}; |
| } |
| DeleterFnPtr raw_deleter() const override { |
| return &raw_delete; |
| } |
| }; |
| |
| CudaCachingAllocator device_allocator; |
| |
| Allocator* get(void) |
| { |
| return &device_allocator; |
| } |
| |
| void init(int device_count) { |
| caching_allocator.init(device_count); |
| } |
| |
| void setMemoryFraction(double fraction, int device) { |
| caching_allocator.setMemoryFraction(fraction, device); |
| } |
| |
| void emptyCache(void) { |
| caching_allocator.emptyCache(); |
| } |
| |
| void cacheInfo(int dev_id, size_t* cachedAndFree, size_t* largestBlock) { |
| caching_allocator.device_allocator[dev_id]->cacheInfo(cachedAndFree, largestBlock); |
| } |
| |
| void* getBaseAllocation(void *ptr, size_t *size) |
| { |
| return caching_allocator.getBaseAllocation(ptr, size); |
| } |
| |
| void recordStream(const DataPtr& ptr, cuda::CUDAStream stream) |
| { |
| caching_allocator.recordStream(ptr, stream); |
| } |
| |
| std::mutex* getFreeMutex() |
| { |
| return caching_allocator.getCudaFreeMutex(); |
| } |
| |
| static inline void assertValidDevice(int device) { |
| int device_num = caching_allocator.device_allocator.size(); |
| TORCH_CHECK(0 <= device && device < device_num, "Invalid device argument."); |
| } |
| |
| DeviceStats getDeviceStats(int device) { |
| assertValidDevice(device); |
| return caching_allocator.device_allocator[device]->getStats(); |
| } |
| |
| void resetAccumulatedStats(int device) { |
| assertValidDevice(device); |
| caching_allocator.device_allocator[device]->resetAccumulatedStats(); |
| } |
| |
| void resetPeakStats(int device) { |
| assertValidDevice(device); |
| caching_allocator.device_allocator[device]->resetPeakStats(); |
| } |
| |
| std::vector<SegmentInfo> snapshot() { |
| return caching_allocator.snapshot(); |
| } |
| |
| // |
| // In CUDA IPC, sender sends a tensor to receiver, getIpcDevPtr |
| // is called by the receiving process to map the CUDA memory from the sending |
| // process into its own address space. |
| // |
| // CUDA IPC only allows sharing a big memory block associated with a cudaIpcMemHandle_t |
| // and it can be opened only **once** per context per process. There can be |
| // multiple types of storage in the same IPC mem block, so we must cache the |
| // device ptr to construct typed storage as it comes. |
| // |
| // ipcMemHandle_to_devptr maps a cudaIpcMemHandle_t to a device pointer in the process |
| // that can be used to access the memory block in the sender process. |
| // It only saves a weak_ptr of the device pointer in the map, the shared_ptr |
| // will be used to reconstruct all storages in this CudaMalloc allocation. |
| // And it will deleted in cudaIpcCloseMemHandle when its reference count is 0. |
| // |
| namespace { |
| std::mutex IpcMutex; |
| std::unordered_map<std::string, std::weak_ptr<void>> ipcMemHandle_to_devptr; |
| } |
| |
| std::shared_ptr<void> getIpcDevPtr(std::string handle) { |
| std::lock_guard<std::mutex> lock(IpcMutex); |
| |
| auto iter = ipcMemHandle_to_devptr.find(handle); |
| if (iter != ipcMemHandle_to_devptr.end()) { |
| auto devptr = iter->second.lock(); |
| if (devptr) return devptr; |
| } |
| // This ipcMemHandle hasn't been opened, or already expired, open it to |
| // enable IPC access to that mem block. |
| void *dev = nullptr; |
| auto ipc_handle = reinterpret_cast<const cudaIpcMemHandle_t*>(handle.c_str()); |
| C10_CUDA_CHECK(cudaIpcOpenMemHandle(&dev, *ipc_handle, cudaIpcMemLazyEnablePeerAccess)); |
| // devPtr has to be deleted in same device when created. |
| int curr_device; |
| C10_CUDA_CHECK(cudaGetDevice(&curr_device)); |
| auto sp = std::shared_ptr<void>( |
| dev, |
| [handle, curr_device](void *ptr) { |
| cuda::CUDAGuard device_guard(curr_device); |
| std::lock_guard<std::mutex> deleter_lock(IpcMutex); |
| C10_CUDA_CHECK(cudaIpcCloseMemHandle(ptr)); |
| ipcMemHandle_to_devptr.erase(handle);}); |
| std::weak_ptr<void> wp = sp; |
| // To eliminate an additional search, we can use insert(). |
| // It doesn't overwrite when key already exists(ptr expired). |
| // But in the deleter for sp we erased the entry, |
| // this should be safe to do now. |
| ipcMemHandle_to_devptr.insert(iter, {handle, wp}); |
| |
| return sp; |
| } |
| |
| void* raw_alloc(size_t nbytes) { |
| if (nbytes == 0) { |
| return nullptr; |
| } |
| int device; |
| C10_CUDA_CHECK(cudaGetDevice(&device)); |
| void* r = nullptr; |
| caching_allocator.malloc(&r, device, nbytes, cuda::getCurrentCUDAStream(device)); |
| return r; |
| } |
| |
| void* raw_alloc_with_stream(size_t nbytes, cudaStream_t stream) { |
| if (nbytes == 0) { |
| return nullptr; |
| } |
| int device; |
| C10_CUDA_CHECK(cudaGetDevice(&device)); |
| void* r = nullptr; |
| caching_allocator.malloc(&r, device, nbytes, stream); |
| return r; |
| } |
| |
| void raw_delete(void* ptr) { |
| caching_allocator.free(ptr); |
| } |
| |
| } // namespace CUDACachingAllocator |
| |
| }} // namespace c10::cuda |