| #pragma once |
| |
| #include <ATen/ATen.h> |
| #include <ATen/cuda/CUDAContext.h> |
| #include <THC/THC.h> |
| #include <c10/cuda/CUDACachingAllocator.h> |
| #include <c10/util/Optional.h> |
| |
| #include <cstddef> |
| #include <vector> |
| |
| namespace torch { |
| namespace cuda { |
| namespace nccl { |
| |
| /* The following are copied from <nccl.h> and redefined in torch::cuda::nccl namespace */ |
| /* pytorch should only use the following definition within pytorch scope */ |
| |
| /* Opaque handle to communicator to ncclComm*, this will reinterpret as ncclComm in nccl.cpp */ |
| typedef void* ncclComm_t; |
| |
| /** redefine nccl unique ID in torch scope. this should be identical to native nccl impp. */ |
| #define NCCL_UNIQUE_ID_BYTES 128 |
| typedef struct { char internal[NCCL_UNIQUE_ID_BYTES]; } ncclUniqueId; |
| |
| /* Error type */ |
| enum class ncclResult { |
| Success = 0, |
| UnhandledCudaError = 1, |
| SystemError = 2, |
| InternalError = 3, |
| InvalidArgument = 4, |
| InvalidUsage = 5, |
| NumResults = 6 }; |
| |
| /* Reduction operation selector */ |
| enum class ncclRedOp { |
| Sum = 0, |
| Prod = 1, |
| Max = 2, |
| Min = 3, |
| NumOps = 4 }; |
| |
| /* Data types */ |
| enum class ncclDataType { |
| Int8 = 0, Char = 0, |
| Uint8 = 1, |
| Int32 = 2, Int = 2, |
| Uint32 = 3, |
| Int64 = 4, |
| Uint64 = 5, |
| Float16 = 6, Half = 6, |
| Float32 = 7, Float = 7, |
| Float64 = 8, Double = 8, |
| numTypes = 9 }; |
| |
| |
| |
| // NOTE: this is exposed only so that python_nccl.cpp can some of these helpers. |
| // Don't use them outside of these files. |
| namespace detail { |
| |
| TORCH_CUDA_API void throw_nccl_error(ncclResult status); |
| |
| static inline void NCCL_CHECK(ncclResult status) { |
| if (status != ncclResult::Success) { |
| throw_nccl_error(status); |
| } |
| } |
| |
| TORCH_CUDA_API at::ArrayRef<ncclComm_t> get_communicators(at::TensorList inputs); |
| TORCH_CUDA_API void check_inputs( |
| at::TensorList inputs, |
| at::TensorList outputs, |
| int input_multiplier, |
| int output_multiplier); |
| TORCH_CUDA_API void check_inputs( |
| at::TensorList inputs, |
| const at::Tensor& output, |
| int root, |
| int input_multiplier, |
| int output_multiplier); |
| |
| } // namespace detail |
| |
| using comm_list = std::vector<ncclComm_t>; |
| using stream_list = std::vector<c10::optional<at::cuda::CUDAStream>>; |
| |
| TORCH_CUDA_API std::uint64_t version(); |
| |
| bool is_available(at::TensorList tensors); |
| |
| TORCH_CUDA_API void get_unique_id(ncclUniqueId& id); |
| TORCH_CUDA_API ncclComm_t comm_init_rank(int nranks, const ncclUniqueId& comm_id, int rank); |
| TORCH_CUDA_API void comm_destroy(ncclComm_t comm); |
| |
| TORCH_CUDA_API void broadcast( |
| at::TensorList tensors, |
| const stream_list& streams = {}, |
| const comm_list& user_comms = {}); |
| |
| size_t get_max_count(); |
| |
| TORCH_CUDA_API void reduce( |
| const std::vector<at::Tensor>& inputs, |
| at::Tensor& output, |
| int32_t root = 0, |
| int32_t op = static_cast<int>(ncclRedOp::Sum), |
| const stream_list& streams = {}, |
| const comm_list& user_comms = {}); |
| |
| TORCH_CUDA_API void reduce( |
| std::vector<at::Tensor>& inputs, |
| int32_t root = 0, |
| int32_t op = static_cast<int>(ncclRedOp::Sum), |
| const stream_list& streams = {}, |
| const comm_list& user_comms = {}); |
| |
| TORCH_CUDA_API void all_reduce( |
| const std::vector<at::Tensor>& inputs, |
| std::vector<at::Tensor>& outputs, |
| int32_t op = static_cast<int>(ncclRedOp::Sum), |
| const stream_list& streams = {}, |
| const comm_list& user_comms = {}); |
| |
| TORCH_CUDA_API void reduce_scatter( |
| const std::vector<at::Tensor>& inputs, |
| std::vector<at::Tensor>& outputs, |
| int32_t op = static_cast<int>(ncclRedOp::Sum), |
| const stream_list& streams = {}, |
| const comm_list& user_comms = {}); |
| |
| TORCH_CUDA_API void all_gather( |
| const std::vector<at::Tensor>& inputs, |
| std::vector<at::Tensor>& outputs, |
| const stream_list& streams = {}, |
| const comm_list& user_comms = {}); |
| |
| TORCH_CUDA_API void all2all( |
| at::Tensor& input, |
| at::Tensor& output, |
| int size, |
| ncclComm_t comm, |
| at::cuda::CUDAStream& stream); |
| |
| TORCH_CUDA_API void send( |
| const at::Tensor& input, |
| ncclComm_t comm, |
| at::cuda::CUDAStream stream, |
| int dst); |
| |
| TORCH_CUDA_API void recv( |
| at::Tensor& output, |
| ncclComm_t comm, |
| at::cuda::CUDAStream stream, |
| int src); |
| } // namespace nccl |
| } // namespace cuda |
| } // namespace torch |