blob: 9223896666dec6ab772469cb9939c5309a6c320a [file] [log] [blame]
# Generates Python bindings for ATen functions
#
# The bindings are generated as methods on python_variable or functions on the
# torch._C._nn. torch._C._fft, or torch._C._linalg objects.
#
# Code tries to stick to the following rules:
#
# - templates should be colocated with the functions that use them.
# no templates are currently shared between functions, but if that
# happens, maybe put the template with the first one
#
# - don't use environment dictionaries when calling template.substitute().
# pass named arguments directly for everything, otherwise it's much too
# hard to track what's actually being used and by who
#
# - colocate any new hacks/adjustments with existing ones of the same kind.
# ideally in a data structure rather than code if possible. See e.g.
# SCHEMA_DEFAULT_CONVERSION_HACKS, etc.
#
# - similarly, conversions from one format to another should ideally happen
# all at once in a single place.
#
# - no nontrivial nested functions. couple-liners are ok but please no more.
# especially avoid functions that read/write outer variables defined far away.
#
# - raise RuntimeError instead of asserting, and put as much
# information as is available into the message. I.e. no need to
# plumb in new params whose only purpose is to fill out an error
# message, but use what's there
#
from collections import defaultdict
import re
from .gen_variable_type import should_trace
from .utils import write, is_tensor_method
from tools.codegen.code_template import CodeTemplate
from tools.codegen.api.python import *
from tools.codegen.gen import cpp_string, with_native_function
from tools.codegen.model import *
from typing import Dict, Optional, List, Any
#
# declarations blocklist
# We skip codegen for these functions, for various reasons.
# Future PRs will categorize this list and eliminate or hoist
# them out of eager-only codegen.
# See https://github.com/pytorch/pytorch/issues/30788
#
# These functions require manual Python bindings or are not exposed to Python
SKIP_PYTHON_BINDINGS = [
'alias', 'contiguous', 'is_cuda', 'is_sparse', 'size', 'stride',
'.*_backward', '.*_backward_(out|input|weight|bias)', '.*_forward',
'.*_forward_out', '_unsafe_view', 'tensor', '_?sparse_coo_tensor.*',
'_arange.*', '_range.*', '_linspace.*', '_logspace.*',
'_sparse_add_out', '_sparse_div.*', '_sparse_mul.*', '_sparse_sub.*', '_sparse_dense_add_out',
'index', 'unique_dim_consecutive',
'_indexCopy_', '_cumsum.*', '_cumprod.*', '_sum.*', '_prod.*',
'_th_.*', '_thnn_.*',
'arange.*', 'range.*', '_solve.*', '_inverse.*',
'full(_out)?',
'_cholesky.*', '_triangular_solve.*', '_qr.*', '_symeig.*', '_svd.*',
'slice', 'randint(_out)?',
'item', '_local_scalar_dense', 'to',
'copy_sparse_to_sparse_', 'copy_',
'numpy_T', # this needs to be an attribute in Python, not a function
'nonzero(_(out|numpy))?',
'set_quantizer_', # return types not supported yet
'set_data',
'.*_overrideable', # overrideable functions for backend extension
'data', 'is_leaf', 'output_nr', '_version', 'requires_grad_', 'retain_grad', 'set_'
]
# These function signatures are not exposed to Python. Note that this signature
# list does not support regex.
SKIP_PYTHON_BINDINGS_SIGNATURES = [
'add(Tensor, Scalar, Scalar)', 'add_(Tensor, Scalar, Scalar)',
'sub(Tensor, Scalar, Scalar)', 'sub_(Tensor, Scalar, Scalar)',
'mul(Tensor, Scalar)', 'mul_(Tensor, Scalar)',
'div(Tensor, Scalar)', 'div_(Tensor, Scalar)',
]
NATIVE_NAMESPACE_MAPPING = {
"torch": "THPVariableFunctionsModule",
"torch.nn": "THPNNVariableFunctionsModule",
"torch.fft": "THPFFTVariableFunctionsModule",
"torch.linalg": "THPLinalgVariableFunctionsModule",
}
def should_generate_python_binding(declaration):
name = declaration['name']
for pattern in SKIP_PYTHON_BINDINGS:
if re.match('^' + pattern + '$', name):
return False
simple_types = [arg['simple_type'] for arg in declaration['arguments']]
signature = '{}({})'.format(name, ', '.join(simple_types))
for pattern in SKIP_PYTHON_BINDINGS_SIGNATURES:
if pattern == signature:
return False
return True
#
# top-level codegen functions, called from gen_autograd
#
def get_py_variable_methods(declarations):
"""
Get declarations (grouped by name) which should be generated
as methods on Tensor.
"""
def should_bind(declaration):
return (should_generate_python_binding(declaration) and
not is_nn_module_function(declaration) and
is_tensor_method(declaration))
return group_declarations_by_op_name([d for d in declarations if should_bind(d)])
def gen_py_variable_methods(out, declarations, template_path):
"""
Generate Tensor methods.
"""
PY_VARIABLE_METHODS_CPP = CodeTemplate.from_file(template_path + '/python_variable_methods.cpp')
py_variable_methods = get_py_variable_methods(declarations)
env = create_python_bindings(py_variable_methods, is_python_method=True, module=None)
write(out, 'python_variable_methods.cpp', PY_VARIABLE_METHODS_CPP, env)
def get_py_nn_functions(declarations):
"""
Get declarations (grouped by name) which should be generated
as functions in the "nn" module.
"""
def should_bind(declaration):
return (should_generate_python_binding(declaration) and
is_nn_module_function(declaration))
return group_declarations_by_op_name([d for d in declarations if should_bind(d)])
def gen_py_nn_functions(out, declarations, template_path):
"""
Generate functions in the "nn" module.
"""
PY_NN_FUNCTIONS_CPP = CodeTemplate.from_file(template_path + '/python_nn_functions.cpp')
py_nn_functions = get_py_nn_functions(declarations)
env = create_python_bindings(py_nn_functions, is_python_method=False, module="torch.nn")
write(out, 'python_nn_functions.cpp', PY_NN_FUNCTIONS_CPP, env)
def get_py_fft_functions(declarations):
"""
Get declarations (grouped by name) which should be generated
as functions in the "fft" module.
"""
def should_bind(declaration):
return (should_generate_python_binding(declaration) and
is_fft_module_function(declaration))
return group_declarations_by_op_name([d for d in declarations if should_bind(d)])
def gen_py_fft_functions(out, declarations, template_path):
"""
Generate functions in the "fft" module.
"""
PY_FFT_FUNCTIONS_CPP = CodeTemplate.from_file(template_path + '/python_fft_functions.cpp')
py_fft_functions = get_py_fft_functions(declarations)
env = create_python_bindings(py_fft_functions, is_python_method=False, module="torch.fft")
write(out, 'python_fft_functions.cpp', PY_FFT_FUNCTIONS_CPP, env)
def get_py_linalg_functions(declarations):
"""
Get declarations (grouped by name) which should be generated
as functions in the "linalg" module.
"""
def should_bind(declaration):
return (should_generate_python_binding(declaration) and
is_linalg_module_function(declaration))
return group_declarations_by_op_name([d for d in declarations if should_bind(d)])
def gen_py_linalg_functions(out, declarations, template_path):
"""
Generate functions in the "linalg" module.
"""
PY_LINALG_FUNCTIONS_CPP = CodeTemplate.from_file(template_path + '/python_linalg_functions.cpp')
py_linalg_functions = get_py_linalg_functions(declarations)
env = create_python_bindings(py_linalg_functions, is_python_method=False, module="torch.linalg")
write(out, 'python_linalg_functions.cpp', PY_LINALG_FUNCTIONS_CPP, env)
def get_py_torch_functions(declarations):
"""
Get declarations (grouped by name) which should be generated
as functions in the "torch" module.
"""
def should_bind(declaration):
return (should_generate_python_binding(declaration) and
not is_nn_module_function(declaration) and
not is_fft_module_function(declaration) and
not is_linalg_module_function(declaration) and
is_torch_function(declaration))
return group_declarations_by_op_name([d for d in declarations if should_bind(d)])
def gen_py_torch_functions(out, declarations, template_path):
"""
Generate functions in the "torch" module.
"""
PY_TORCH_FUNCTIONS_CPP = CodeTemplate.from_file(template_path + '/python_torch_functions.cpp')
py_torch_functions = get_py_torch_functions(declarations)
env = create_python_bindings(py_torch_functions, is_python_method=False, module="torch")
write(out, 'python_torch_functions.cpp', PY_TORCH_FUNCTIONS_CPP, env)
def group_declarations_by_op_name(declarations):
groups = defaultdict(list)
for d in declarations:
groups[op_name(d)].append(d)
return groups
def create_python_bindings(python_functions, is_python_method, module):
"""Generates Python bindings to ATen functions"""
py_methods = []
py_method_defs = []
py_forwards = []
for name in sorted(python_functions.keys()):
overload_decls = python_functions[name]
for declaration in overload_decls:
# TODO: change all methods to directly process python signatures instead of decls.
declaration['python_signature'] = decl_to_python_signature(declaration, method=is_python_method)
declaration['native_function'] = decl_to_native_function(declaration)
py_methods.append(method_impl(name, overload_decls, is_python_method, module))
py_method_defs.append(method_def(name, overload_decls, is_python_method, module))
py_forwards.extend(forward_decls(name, overload_decls, is_python_method, module))
return {
'py_forwards': py_forwards,
'py_methods': py_methods,
'py_method_defs': py_method_defs,
}
# handler for output/no-output overload pair
# (plugged into PY_VARIABLE_CASE as ${call_dispatch})
PY_VARIABLE_OUT = CodeTemplate("""\
if (_r.isNone(${out_idx})) {
${call_dispatch}
} else {
${call_dispatch_out}
}
""")
# handler for a single parsed signature - may be a single overload or
# a pair of overloads that whose signatures only differ in output params
PY_VARIABLE_CASE = CodeTemplate("""\
case ${i}: {
${body}
}
""")
def emit_dispatch_case(i, dictionary, is_python_method):
"""
Emit dispatch code for a single parsed signature. This corresponds to either
a single overload, or a pair that differ only in output params. In the latter
case, a single signature is used for both and dispatching switches on the
presence/absence of passed output args.
- i: this signature's position in generated binding's signature list if number of
signatures > 1, otherwise None
- dictionary: contains a no-output overload declaration under 'base', and optionally
a second overload with outputs under 'out'
- true if we're generating a python method, in which case self is not parsed but
passed directly
"""
base_decl = dictionary['base']
python_sig = base_decl['python_signature']
if 'out' in dictionary:
# dispatch to output or no-output variant based on arg test
out_decl = dictionary['out']
python_sig = out_decl['python_signature'] # prefer output variant
out_idx = get_python_output_index(out_decl)
call_dispatch = emit_single_dispatch(python_sig, base_decl, is_python_method)
call_dispatch_out = emit_single_dispatch(python_sig, out_decl, is_python_method)
# dispatch output and no-output variants, branch on _r.isNone(<out_idx>)
body = PY_VARIABLE_OUT.substitute(
out_idx=out_idx,
call_dispatch=call_dispatch,
call_dispatch_out=call_dispatch_out,
)
else:
# no-output version only
body = emit_single_dispatch(python_sig, base_decl, is_python_method)
if i is not None:
# generate case for ith overload
return PY_VARIABLE_CASE.substitute(i=i, body=body)
else:
# only one overload, omit case wrapper
return body
#
# named tuple codegen
#
def namedtuple_fieldnames(declaration):
returns = declaration['returns']
if len(returns) <= 1 or all(['field_name' not in x for x in returns]):
return []
else:
def get_field_name(x):
# See Note [field_name versus name]
if 'field_name' not in x:
# When building on Windows, `PyStructSequence_UnnamedField` could not be
# resolved by the linker for some reason, which cause error in building:
#
# python_nn_functions.cpp.obj : error LNK2001: unresolved external symbol
# PyStructSequence_UnnamedField
#
# Thus, at this point in time, we do not support unnamed
# fields in namedtuple; you must either name all fields,
# or none of them.
raise ValueError("Unnamed field is not supported by codegen")
else:
return x['field_name']
return [get_field_name(x) for x in returns]
PY_NAMEDTUPLE_FIELDSDEF = CodeTemplate("""\
static PyStructSequence_Field ${fieldsname}[] = { ${fields,} {nullptr} };
""")
PY_NAMEDTUPLE_TYPEDEF = CodeTemplate("""\
static PyTypeObject ${typename};
static bool ${typename}_initialized = false;
if (!${typename}_initialized) {
${typename}_initialized = true;
static PyStructSequence_Desc desc = { "torch.return_types.${name}", nullptr, ${fieldsname}, ${size} };
PyStructSequence_InitType(&${typename}, &desc);
${typename}.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
}
""")
def emit_namedtuple_typedefs(declarations):
"""
Generate block of named tuple type def inits, and add typeref snippets
to declarations that use them
"""
flddefnames = {} # map from unique field name lists to field def name
flddefs = [] # field def declarations
typenames = {} # map from unique name + field name lists to typedef name
typedefs = [] # typedef declarations and init code
for decl in declarations:
fieldnames = namedtuple_fieldnames(decl)
if fieldnames == []:
decl['namedtuple_typeref'] = ''
continue
fn_key = '_'.join(fieldnames)
fieldsname = flddefnames.get(fn_key)
if fieldsname is None:
fieldsname = 'NamedTuple_fields{}'.format('' if flddefs == [] else len(fielddefs))
fields = ['{{"{}", ""}}'.format(fn) for fn in fieldnames]
fieldsdef = PY_NAMEDTUPLE_FIELDSDEF.substitute(
fieldsname=fieldsname,
fields=fields
)
flddefnames[fn_key] = fieldsname
flddefs.append(fieldsdef)
name = decl['name']
key = '{}_{}'.format(name, '_'.join(fieldnames))
typename = typenames.get(key)
if typename is None:
typename = 'NamedTuple{}'.format('' if typedefs == [] else len(typedefs))
typedef = PY_NAMEDTUPLE_TYPEDEF.substitute(
name=name,
typename=typename,
size=len(fieldnames),
fieldsname=fieldsname
)
typenames[key] = typename
typedefs.append(typedef)
decl['namedtuple_typeref'] = '&{}, '.format(typename)
return flddefs + typedefs
#
# method impl codegen
#
def get_pycname(name):
return 'THPVariable_{}'.format(name)
def is_noarg_binding(overloads):
return len(overloads) == 1 and get_python_argc(overloads[0]) == 0
# python binding for all overloads of a particular function/method
PY_VARIABLE_METHOD_VARARGS = CodeTemplate(r"""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
${method_header}
static PythonArgParser parser({
${signatures}
}, /*traceable=*/${traceable});
ParsedArgs<${max_args}> parsed_args;
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
${check_has_torch_function}
switch (_r.idx) {
${dispatch}
}
${method_footer}
}
""")
# python binding for single-overload function/method
PY_VARIABLE_METHOD_VARARGS_SINGLETON = CodeTemplate("""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
${method_header}
static PythonArgParser parser({
${signatures}
}, /*traceable=*/${traceable});
ParsedArgs<${max_args}> parsed_args;
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
${check_has_torch_function}
${dispatch}
${method_footer}
}
""")
# python binding for a method with no args, shortcuts parsing
PY_VARIABLE_METHOD_NOARGS = CodeTemplate("""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args)
{
${method_header}
${check_has_torch_function}
${dispatch}
${method_footer}
}
""")
TORCH_FUNCTION_CHECK = CodeTemplate("""\
if(_r.has_torch_function()) {
return handle_torch_function(_r, ${self_}, args, kwargs, ${namespace}, ${modulename});
}
""")
TORCH_FUNCTION_CHECK_NOARGS = CodeTemplate("""\
if(check_has_torch_function(self_)) {
return handle_torch_function(self_, ${name});
}
""")
# NOTE: we type the unpacked self as Tensor not Variable to avoid return type
# discrepancies on method resolution (e.g. Variable::detach_ returns void
# rather than Tensor &)
UNPACK_SELF = "Tensor& self = reinterpret_cast<THPVariable*>(self_)->cdata;"
def method_impl(name, declarations, is_python_method, module):
"""
Generate a python binding for all overloads of an op.
"""
pycname = get_pycname(name)
method_header = ['HANDLE_TH_ERRORS']
method_header += emit_namedtuple_typedefs(declarations)
method_header += [UNPACK_SELF] if is_python_method else []
method_footer = ['END_HANDLE_TH_ERRORS']
check_has_torch_function = TORCH_FUNCTION_CHECK_NOARGS.substitute(
name='"' + name + '"',
) if is_python_method else ''
# emit dispatch
if is_noarg_binding(declarations):
python_sig = declarations[0]['python_signature']
dispatch = emit_single_dispatch(python_sig, declarations[0], is_python_method)
return PY_VARIABLE_METHOD_NOARGS.substitute(
name=name,
pycname=pycname,
method_header=method_header,
dispatch=dispatch,
method_footer=method_footer,
check_has_torch_function=check_has_torch_function,
)
method_footer = ['Py_RETURN_NONE;'] + method_footer
grouped = group_overloads(declarations, is_python_method)
is_singleton = len(grouped) == 1
signatures = []
dispatch = []
for i, dictionary in enumerate(grouped):
signature = dictionary['signature']
signatures.append(f'{cpp_string(str(signature))},')
overload_index = i if not is_singleton else None
dispatch.append(emit_dispatch_case(overload_index, dictionary, is_python_method))
if is_singleton:
template = PY_VARIABLE_METHOD_VARARGS_SINGLETON
else:
template = PY_VARIABLE_METHOD_VARARGS
if module:
check_has_torch_function = TORCH_FUNCTION_CHECK.substitute(
namespace=NATIVE_NAMESPACE_MAPPING[module],
modulename='"' + module + '"',
self_="self_" if is_python_method else "nullptr",
)
else:
check_has_torch_function = TORCH_FUNCTION_CHECK.substitute(
namespace="THPVariableClass",
modulename='"torch.Tensor"',
self_="self_" if is_python_method else "nullptr",
)
max_args = max([get_python_argc(decl) for decl in declarations])
traceable = 'true' if all(should_trace(d) for d in declarations) else 'false'
return template.substitute(
name=name,
pycname=pycname,
method_header=method_header,
max_args=max_args,
signatures=signatures,
traceable=traceable,
check_has_torch_function=check_has_torch_function,
dispatch=dispatch,
method_footer=method_footer,
self_="self_" if is_python_method else "nullptr",
)
#
# forward declarations
#
PY_VARIABLE_FUNCTION_VARARGS_FORWARD_DECLARATION = CodeTemplate("""\
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs);
""")
PY_VARIABLE_FUNCTION_NOARGS_FORWARD_DECLARATION = CodeTemplate("""\
static PyObject * ${pycname}(PyObject* self_, PyObject* args);
""")
def forward_decls(name, declarations, is_python_method, module):
if is_python_method:
return []
if is_noarg_binding(declarations):
template = PY_VARIABLE_FUNCTION_NOARGS_FORWARD_DECLARATION
else:
template = PY_VARIABLE_FUNCTION_VARARGS_FORWARD_DECLARATION
pycname = get_pycname(name)
return [template.substitute(pycname=pycname)]
#
# method def (binding table entry) codegen
#
# Python binary operator dunder methods
BINARY_OP_NAMES = [
'__lt__', '__le__',
'__gt__', '__ge__',
'__eq__', '__ne__',
'__add__', '__radd__', '__iadd__',
'__sub__', '__rsub__', '__isub__',
'__mul__', '__rmul__', '__imul__',
'__matmul__', '__rmatmul__', '__imatmul__',
'__truediv__', '__rtruediv__', '__itruediv__',
'__floordiv__', '__rfloordiv__', '__ifloordiv__',
'__mod__', '__rmod__', '__imod__',
'__divmod__', '__rdivmod__', '__idivmod__',
'__pow__', '__rpow__', '__ipow__',
'__lshift__', '__rlshift__', '__ilshift__',
'__rshift__', '__rrshift__', '__irshift__',
'__and__', '__rand__', '__iand__',
'__xor__', '__rxor__', '__ixor__',
'__or__', '__ror__', '__ior__',
]
# PyMethodDef entry for binary op, throws not implemented error
PY_VARIABLE_METHOD_BINOP_DEF = CodeTemplate("""\
{"${name}", ${pyfunc_cast}(TypeError_to_NotImplemented_<${pycname}>), ${flags}, NULL},""")
# PyMethodDef entry
PY_VARIABLE_METHOD_DEF = CodeTemplate("""\
{"${name}", ${pyfunc_cast}(${pycname}), ${flags}, NULL},""")
def method_def(name, declarations, is_python_method, module):
"""
Generate method def entry.
"""
pycname = get_pycname(name)
if is_noarg_binding(declarations):
pyfunc_cast = ''
flags = 'METH_NOARGS' if is_python_method else 'METH_VARARGS | METH_KEYWORDS'
else:
pyfunc_cast = 'castPyCFunctionWithKeywords'
flags = 'METH_VARARGS | METH_KEYWORDS'
if module == "torch":
flags += ' | METH_STATIC'
if name in BINARY_OP_NAMES:
def_template = PY_VARIABLE_METHOD_BINOP_DEF
else:
def_template = PY_VARIABLE_METHOD_DEF
return def_template.substitute(
name=name,
pycname=pycname,
pyfunc_cast=pyfunc_cast,
flags=flags,
)
#
# overload sorting and grouping
#
def group_overloads(declarations, is_python_method):
"""Returns a list of dictionaries containing the optional keys:
"base": the regular ATen declaration (e.g. conv2d)
"out": the out variant (e.g. conv2d_out)
"signature": the signature used for Python argument parsing
Note that we merge pairs of declarations with signatures that
are equivalent mod output arguments, and use a single entry in
the python_arg_parser sig list for both (output arguments become
optional)
"""
grouped = defaultdict(dict)
# first group by signature ignoring out arguments
for declaration in declarations:
signature = get_python_signature(declaration, is_python_method, skip_outputs=True)
v = grouped[signature]
if declaration['name'].endswith('_out'):
v['out'] = declaration
# prefer the signature with optional out=... arguments
v['signature'] = get_python_signature(declaration, is_python_method)
else:
v['base'] = declaration
if 'signature' not in v:
v['signature'] = signature
result = []
for x, dictionary in sorted(grouped.items()):
if 'base' not in dictionary:
candidates = []
non_out_name = dictionary['out']['operator_name']
for declaration in declarations:
if declaration['name'] == non_out_name and not declaration['deprecated']:
signature = get_python_signature(declaration, is_python_method, skip_outputs=True)
candidates.append(signature)
raise RuntimeError(
"While identifying overloads, we found an out schema {} without a corresponding non-out variant. "
"We expected the non-out variant to have schema: \n- {}\nPlease check that you spelled the schema "
"correctly in native_functions.yaml. We discovered the following candidate(s): \n"
.format(dictionary['signature'], x) + "\n".join("- {}".format(candidate) for candidate in candidates))
result.append(dictionary)
return sort_declarations(result)
# This function declares a partial order on declarations, and sorts them according
# to its linear extension. This is necessary, because there's some ambiguity in the
# choice of overload, and we want a different order.
#
# See Note[Order of overloads matters]
def sort_declarations(grouped_decls):
def dynamic_type(arg):
return arg['dynamic_type']
def is_coord_smaller(arg1, arg2):
return dynamic_type(arg1) == 'Scalar' and arg2['dynamic_type'] == 'Tensor'
def is_smaller(d1, d2):
"""Returns True if d1 < d2 in the partial order."""
args1, args2 = d1['base']['arguments'], d2['base']['arguments']
if len(args1) != len(args2):
return False
any_smaller = any(is_coord_smaller(arg1, arg2) for arg1, arg2 in zip(args1, args2))
all_smaller_or_equal = all(dynamic_type(arg1) == dynamic_type(arg2) or
is_coord_smaller(arg1, arg2)
for arg1, arg2 in zip(args1, args2))
return any_smaller and all_smaller_or_equal
# Construct the relation graph
larger_than = defaultdict(set)
for i1, decl1 in enumerate(grouped_decls):
for i2, decl2 in enumerate(grouped_decls):
if is_smaller(decl1, decl2):
larger_than[i1].add(i2)
if not larger_than:
return grouped_decls
# Use a topological sort to sort decls according to the partial order.
sorted_deps = [(i, decl) for i, decl in enumerate(grouped_decls)
if i not in larger_than]
for i, decl in sorted_deps:
for i2 in sorted(larger_than.keys()):
larger = larger_than[i2]
larger.discard(i)
if not larger:
del larger_than[i2]
sorted_deps.append((i2, grouped_decls[i2]))
return [decl for i, decl in sorted_deps]
#
# python signature codegen
#
def get_python_signature(declaration, is_python_method, skip_outputs=False):
return declaration['python_signature'].signature_str(skip_outputs=skip_outputs)
#
# op args to python parsed args transform
#
def get_python_argc(decl):
return len(decl['python_signature'].arguments())
def get_python_output_index(decl):
ps: PythonSignature = decl['python_signature']
return len(ps.input_args) + len(ps.input_kwargs)
#
# declaration derived props, utils, etc.
# declarations are dicts loaded from Declarations.yaml,
# passed to our codegen methods by callers in gen_autograd
#
def is_output(arg):
return arg.get('output', False)
def has_outputs(declaration):
return any([is_output(arg) for arg in declaration['arguments']])
def is_torch_function(declaration):
return 'namespace' in declaration['method_of']
def is_nn_module_function(declaration):
return declaration.get('python_module') == 'nn'
def is_fft_module_function(declaration):
return declaration.get('python_module') == 'fft'
def is_linalg_module_function(declaration):
return declaration.get('python_module') == 'linalg'
def op_name(declaration):
name = declaration['name']
if has_outputs(declaration):
if not name.endswith("_out"):
raise RuntimeError(
'{} has output params, expecting name ending with \'_out\''.
format(declaration['name']))
return name[:-4]
else:
if name.endswith("_out"):
raise RuntimeError(
'{}: name ends with \'_out\', expecting output params'.
format(declaration['name']))
return name
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Codegen API Integration
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# These helper functions allow us to call the new codegen API from the
# old codegen script (which operates on Declarations.yaml).
# TODO: remove all these HACKs after migration is completed!
# function schema str -> NativeFunction
NF_TABLE: Optional[Dict[str, NativeFunction]] = None
def init(native_yaml_path: str) -> None:
from tools.codegen.gen import parse_native_yaml
global NF_TABLE
NF_TABLE = {str(f.func): f for f in parse_native_yaml(native_yaml_path)}
# Multiple decl entries can map to the same native function (because of deprecated decl).
def decl_to_native_function(decl: Dict[str, Any]) -> NativeFunction:
assert NF_TABLE is not None, 'need to initialize codegen.api.python with init()'
function_schema_str = decl['schema_string']
assert function_schema_str.startswith('aten::'), f'unknown namespace: {function_schema_str}'
function_schema_str = function_schema_str[len('aten::'):]
assert function_schema_str in NF_TABLE, f'cannot find func: {function_schema_str}'
return NF_TABLE[function_schema_str]
# Each decl entry has unique python signature.
def decl_to_python_signature(decl: Dict[str, Any], *, method: bool) -> PythonSignature:
f = decl_to_native_function(decl)
@with_native_function
def go(f: NativeFunction) -> PythonSignature:
return signature(f, method=method)
python_sig = go(f)
if decl.get('deprecated', False):
# TODO: directly load 'deprecated.yaml'.
# deprecated.yaml doesn't have complete type information, we need
# leverage the source signature (to which it delegates the call).
# Deprecated signature might reorder input_args and input_kwargs,
# but never changes output_args nor python_binding_args (if any?),
# so here we only look into these two types of args.
src_args: Dict[str, PythonArgument] = {a.name: PythonArgument(
name=a.name,
type=a.type,
default=None,
default_init=None,
) for a in itertools.chain(python_sig.input_args, python_sig.input_kwargs)}
args: List[Dict[str, Any]] = decl['arguments']
input_arg_names: List[str] = \
list(str(a['name']) for a in args if not a['kwarg_only'] and not a['output'])
input_kwarg_names: List[str] = \
list(str(a['name']) for a in args if a['kwarg_only'] and not a['output'])
python_sig = PythonSignatureDeprecated(
name=python_sig.name,
input_args=tuple(src_args[n] for n in input_arg_names if not method or n != 'self'),
input_kwargs=tuple(src_args[n] for n in input_kwarg_names),
output_args=python_sig.output_args,
tensor_options_args=python_sig.tensor_options_args,
method=python_sig.method,
deprecated_args_names=tuple(str(a['name']) for a in args),
deprecated_args_exprs=tuple(decl.get('call_args')),
)
return python_sig
def emit_single_dispatch(ps: PythonSignature, decl: Dict[str, Any], method: bool) -> str:
"""
Emit dispatch code for a single declared overload.
"""
f = decl['native_function']
@with_native_function
def go(f: NativeFunction) -> str:
# header comments
deprecated = '[deprecated] ' if ps.deprecated else ''
schema_comment = f'// {deprecated}aten::{f.func}'
# dispatch lambda signature
name = decl['name']
lambda_formals = ', '.join(map(lambda a: f"{a.type_str} {a.name}",
dispatch_lambda_args(ps, f, method=method)))
lambda_return = dispatch_lambda_return_str(f)
# dispatch lambda body
dispatch_callee = cpp_dispatch_target(f)
dispatch_args = ', '.join(cpp_dispatch_exprs(f, method, python_signature=ps))
# from arg parser outputs to dispatch lambda arguments
parser_outputs = arg_parser_output_exprs(ps, f, method=method)
lambda_arg_exprs = dispatch_lambda_exprs(ps, f, method=method)
inits = '\n'.join(lambda_arg_exprs.inits)
lambda_args = ', '.join(lambda_arg_exprs.exprs)
# scatter fields
# TODO: Checking `ps.method and ('requires_grad' in parser_outputs)` is a hacky
# solution for enabling the 'requires_grad' argument for tensor methods
# new_full, new_empty, and new_zeros. A much better but more difficult to
# implement solution involves refactoring according to Ed's description here:
# https://github.com/pytorch/pytorch/issues/36455#issuecomment-614767589
need_set_requires_grad = ps.tensor_options_args and (not has_tensor_options(f) or (
ps.method and ('requires_grad' in parser_outputs)))
set_requires_grad = f'.set_requires_grad({parser_outputs["requires_grad"].expr})' \
if need_set_requires_grad else ''
auto_no_gil = '' if decl['with_gil'] else 'pybind11::gil_scoped_release no_gil;'
namedtuple_typeref = decl['namedtuple_typeref']
if lambda_return == 'void':
return f"""\
{schema_comment}
{inits}
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
{auto_no_gil}
{dispatch_callee}({dispatch_args});
}};
dispatch_{name}({lambda_args}){set_requires_grad};
Py_RETURN_NONE;
"""
else:
return f"""\
{schema_comment}
{inits}
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
{auto_no_gil}
return {dispatch_callee}({dispatch_args});
}};
return wrap({namedtuple_typeref}dispatch_{name}({lambda_args}){set_requires_grad});
"""
return go(f)