| r"""Functional interface""" |
| import math |
| import torch |
| from torch import Tensor |
| from typing import List |
| |
| # TODO: use foreach API in optim.functional to do all the computation |
| |
| def _make_sparse(grad, grad_indices, values): |
| size = grad.size() |
| if grad_indices.numel() == 0 or values.numel() == 0: |
| return torch.empty_like(grad) |
| return torch.sparse_coo_tensor(grad_indices, values, size) |
| |
| |
| def adagrad(params: List[Tensor], |
| grads: List[Tensor], |
| state_sums: List[Tensor], |
| state_steps: List[int], |
| lr: float, |
| weight_decay: float, |
| lr_decay: float, |
| eps: float): |
| r"""Functional API that performs Adagrad algorithm computation. |
| |
| See :class:`~torch.optim.Adagrad` for details. |
| """ |
| |
| for (param, grad, state_sum, step) in zip(params, grads, state_sums, state_steps): |
| if weight_decay != 0: |
| if grad.is_sparse: |
| raise RuntimeError("weight_decay option is not compatible with sparse gradients") |
| grad = grad.add(param, alpha=weight_decay) |
| |
| clr = lr / (1 + (step - 1) * lr_decay) |
| |
| if grad.is_sparse: |
| grad = grad.coalesce() # the update is non-linear so indices must be unique |
| grad_indices = grad._indices() |
| grad_values = grad._values() |
| size = grad.size() |
| |
| state_sum.add_(_make_sparse(grad, grad_indices, grad_values.pow(2))) |
| std = state_sum.sparse_mask(grad) |
| std_values = std._values().sqrt_().add_(eps) |
| param.add_(_make_sparse(grad, grad_indices, grad_values / std_values), alpha=-clr) |
| else: |
| state_sum.addcmul_(grad, grad, value=1) |
| std = state_sum.sqrt().add_(eps) |
| param.addcdiv_(grad, std, value=-clr) |
| |
| |
| def adam(params: List[Tensor], |
| grads: List[Tensor], |
| exp_avgs: List[Tensor], |
| exp_avg_sqs: List[Tensor], |
| max_exp_avg_sqs: List[Tensor], |
| state_steps: List[int], |
| amsgrad: bool, |
| beta1: float, |
| beta2: float, |
| lr: float, |
| weight_decay: float, |
| eps: float): |
| r"""Functional API that performs Adam algorithm computation. |
| |
| See :class:`~torch.optim.Adam` for details. |
| """ |
| |
| for i, param in enumerate(params): |
| |
| grad = grads[i] |
| exp_avg = exp_avgs[i] |
| exp_avg_sq = exp_avg_sqs[i] |
| step = state_steps[i] |
| if amsgrad: |
| max_exp_avg_sq = max_exp_avg_sqs[i] |
| |
| bias_correction1 = 1 - beta1 ** step |
| bias_correction2 = 1 - beta2 ** step |
| |
| if weight_decay != 0: |
| grad = grad.add(param, alpha=weight_decay) |
| |
| # Decay the first and second moment running average coefficient |
| exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) |
| exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
| if amsgrad: |
| # Maintains the maximum of all 2nd moment running avg. till now |
| torch.maximum(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) |
| # Use the max. for normalizing running avg. of gradient |
| denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) |
| else: |
| denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) |
| |
| step_size = lr / bias_correction1 |
| |
| param.addcdiv_(exp_avg, denom, value=-step_size) |