blob: 1f08f748caa9c6f7f1c7ecd767543edd435df1f6 [file] [log] [blame]
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "swish_op.h"
#include "caffe2/core/types.h"
#include "caffe2/operators/elementwise_op.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
REGISTER_CPU_OPERATOR(
Swish,
UnaryElementwiseOp<
TensorTypes<float, double>,
CPUContext,
SwishCPUFunctor>);
REGISTER_CPU_OPERATOR(SwishGradient, SwishGradientOp<CPUContext>);
// Input: X, output: Y
OPERATOR_SCHEMA(Swish)
.NumInputs(1)
.NumOutputs(1)
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Swish takes one input data (Tensor<T>) and produces one output data
(Tensor<T>) where the swish function, y = x / (1 + exp(-x)), is applied to the
tensor elementwise.
)DOC")
.Input(0, "X", "1D input tensor")
.Output(0, "Y", "1D output tensor");
// Input: X, Y, dY, output: dX
OPERATOR_SCHEMA(SwishGradient)
.NumInputs(3)
.NumOutputs(1)
.AllowInplace({{2, 0}})
.SetDoc(R"DOC(
SwishGradient takes X, Y and dY and uses this to update dX according to the
chain rule and derivatives of the swish function.
)DOC");
REGISTER_GRADIENT(Swish, GetSwishGradient);
} // namespace caffe2