blob: 750d6a53eaa187c249a98f8670bf323aab09acf6 [file] [log] [blame]
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "caffe2/operators/elementwise_op.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
struct SoftsignCPUFunctor {
template <typename T>
inline void
operator()(const int n, const T* x, T* y, CPUContext* /*device_context*/) {
ConstEigenVectorArrayMap<T> x_arr(x, n);
EigenVectorMap<T>(y, n) = (1 + x_arr.abs()).inverse() * x_arr;
}
};
struct SoftsignGradientCPUFunctor {
template <typename T>
inline void Run(
const int n,
const T* x,
const T* dy,
T* dx,
CPUContext* /*device_context*/) {
ConstEigenVectorArrayMap<T> dy_arr(dy, n);
ConstEigenVectorArrayMap<T> x_arr(x, n);
EigenVectorMap<T>(dx, n) = dy_arr * (1 + x_arr.abs()).pow(2).inverse();
}
};
REGISTER_CPU_OPERATOR(
Softsign,
UnaryElementwiseOp<TensorTypes<float>, CPUContext, SoftsignCPUFunctor>);
REGISTER_CPU_OPERATOR(
SoftsignGradient,
BinaryElementwiseOp<
TensorTypes<float>,
CPUContext,
WithoutBroadcast<SoftsignGradientCPUFunctor>>);
OPERATOR_SCHEMA(Softsign)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Calculates the softsign (x/1+|x|) of the given input tensor element-wise. This
operation can be done in an in-place fashion too, by providing the same input
and output blobs.
)DOC")
.Input(0, "input", "1-D input tensor")
.Output(
0,
"output",
"The softsign (x/1+|x|) values of the input tensor "
"computed element-wise");
OPERATOR_SCHEMA(SoftsignGradient)
.NumInputs(2)
.NumOutputs(1)
.AllowInplace({{1, 0}})
.SetDoc(R"DOC(
Calculates the softsign gradient (sgn(x)/(1+|x|)^2) of the given input tensor
element-wise.
)DOC")
.Input(0, "input", "1-D input tensor")
.Input(1, "input", "1-D input tensor")
.Output(
0,
"output",
"The softsign gradient (sgn(x)/(1+|x|)^2) values of the input tensor "
"computed element-wise");
class GetSoftsignGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
CAFFE_ENFORCE(
I(0) != O(0),
"Cannot compute softsign gradient "
"if you choose to do an in-place calculation.");
return SingleGradientDef(
"SoftsignGradient",
"",
vector<string>{I(0), GO(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(Softsign, GetSoftsignGradient);
} // namespace caffe2