| /** |
| * Copyright (c) 2016-present, Facebook, Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "caffe2/operators/elementwise_op.h" |
| #include "caffe2/utils/math.h" |
| |
| namespace caffe2 { |
| |
| struct SoftsignCPUFunctor { |
| template <typename T> |
| inline void |
| operator()(const int n, const T* x, T* y, CPUContext* /*device_context*/) { |
| ConstEigenVectorArrayMap<T> x_arr(x, n); |
| EigenVectorMap<T>(y, n) = (1 + x_arr.abs()).inverse() * x_arr; |
| } |
| }; |
| |
| struct SoftsignGradientCPUFunctor { |
| template <typename T> |
| inline void Run( |
| const int n, |
| const T* x, |
| const T* dy, |
| T* dx, |
| CPUContext* /*device_context*/) { |
| ConstEigenVectorArrayMap<T> dy_arr(dy, n); |
| ConstEigenVectorArrayMap<T> x_arr(x, n); |
| EigenVectorMap<T>(dx, n) = dy_arr * (1 + x_arr.abs()).pow(2).inverse(); |
| } |
| }; |
| |
| REGISTER_CPU_OPERATOR( |
| Softsign, |
| UnaryElementwiseOp<TensorTypes<float>, CPUContext, SoftsignCPUFunctor>); |
| REGISTER_CPU_OPERATOR( |
| SoftsignGradient, |
| BinaryElementwiseOp< |
| TensorTypes<float>, |
| CPUContext, |
| WithoutBroadcast<SoftsignGradientCPUFunctor>>); |
| |
| OPERATOR_SCHEMA(Softsign) |
| .NumInputs(1) |
| .NumOutputs(1) |
| .AllowInplace({{0, 0}}) |
| .IdenticalTypeAndShape() |
| .SetDoc(R"DOC( |
| Calculates the softsign (x/1+|x|) of the given input tensor element-wise. This |
| operation can be done in an in-place fashion too, by providing the same input |
| and output blobs. |
| )DOC") |
| .Input(0, "input", "1-D input tensor") |
| .Output( |
| 0, |
| "output", |
| "The softsign (x/1+|x|) values of the input tensor " |
| "computed element-wise"); |
| |
| OPERATOR_SCHEMA(SoftsignGradient) |
| .NumInputs(2) |
| .NumOutputs(1) |
| .AllowInplace({{1, 0}}) |
| .SetDoc(R"DOC( |
| Calculates the softsign gradient (sgn(x)/(1+|x|)^2) of the given input tensor |
| element-wise. |
| )DOC") |
| .Input(0, "input", "1-D input tensor") |
| .Input(1, "input", "1-D input tensor") |
| .Output( |
| 0, |
| "output", |
| "The softsign gradient (sgn(x)/(1+|x|)^2) values of the input tensor " |
| "computed element-wise"); |
| |
| class GetSoftsignGradient : public GradientMakerBase { |
| using GradientMakerBase::GradientMakerBase; |
| vector<OperatorDef> GetGradientDefs() override { |
| CAFFE_ENFORCE( |
| I(0) != O(0), |
| "Cannot compute softsign gradient " |
| "if you choose to do an in-place calculation."); |
| |
| return SingleGradientDef( |
| "SoftsignGradient", |
| "", |
| vector<string>{I(0), GO(0)}, |
| vector<string>{GI(0)}); |
| } |
| }; |
| |
| REGISTER_GRADIENT(Softsign, GetSoftsignGradient); |
| |
| } // namespace caffe2 |