| /** |
| * Copyright (c) 2016-present, Facebook, Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "caffe2/operators/slice_op.h" |
| #include "caffe2/utils/math.h" |
| |
| namespace caffe2 { |
| |
| REGISTER_CPU_OPERATOR(Slice, SliceOp<int, CPUContext>); |
| REGISTER_CPU_OPERATOR(SliceGradient, SliceGradientOp<int, CPUContext>); |
| |
| OPERATOR_SCHEMA(Slice) |
| .NumInputs(1, 3) |
| .NumOutputs(1) |
| .SetDoc(R"DOC( |
| Produces a slice of the input tensor. Currently, only slicing in a single |
| dimension is supported. |
| Slices are passed as 2 1D vectors or as two keyword argument lists with starting |
| and end indices for each dimension of the input `data` tensor. If a negative |
| value is passed for any of the start or end indices, it represents the number of |
| elements before the end of that dimension. End indices are non-inclusive unless |
| negative (end index -1 means up to and including the last element). |
| |
| Example: |
| |
| data = [ |
| [1, 2, 3, 4], |
| [5, 6, 7, 8], |
| ] |
| starts = [0, 1] |
| ends = [-1, 3] |
| |
| result = [ |
| [2, 3], |
| [6, 7], |
| ] |
| )DOC") |
| .Input(0, "data", "Tensor of data to extract slices from.") |
| .Input(1, "starts", "1D tensor: start-indices for each dimension of data.") |
| .Input(2, "ends", "1D tensor: end-indices for each dimension of data.") |
| .Arg("starts", "List of starting indices") |
| .Arg("ends", "List of ending indices") |
| .TensorInferenceFunction([](const OperatorDef& def, |
| const vector<TensorShape>& in) { |
| if (in.size() > 1) { |
| // Cannot compute shape inference when the splits are defined |
| // in data. |
| return vector<TensorShape>(); |
| } |
| auto const& data = in[0]; |
| |
| ArgumentHelper helper(def); |
| auto starts = helper.GetRepeatedArgument<int>("starts", vector<int>()); |
| auto ends = helper.GetRepeatedArgument<int>("ends", vector<int>()); |
| vector<int> dst_sizes(data.dims_size()); |
| |
| for (int i = 0; i < data.dims_size(); ++i) { |
| if (i >= starts.size()) { |
| continue; |
| } |
| if (data.dims_size() > 0) { |
| auto start = starts[i]; |
| auto end = ends[i]; |
| if (start < 0) { |
| start = data.dims(i) + 1 + start; |
| } |
| if (end < 0) { |
| end = data.dims(i) + 1 + end; |
| } |
| dst_sizes[i] = end - start; |
| } else { |
| dst_sizes[i] = 0; |
| } |
| } |
| return vector<TensorShape>{ |
| CreateTensorShape(dst_sizes, data.data_type())}; |
| }) |
| .Output(0, "output", "Sliced data tensor."); |
| |
| OPERATOR_SCHEMA(SliceGradient); |
| |
| namespace { |
| struct GetSliceGradient : public GradientMakerBase { |
| using GradientMakerBase::GradientMakerBase; |
| vector<OperatorDef> GetGradientDefs() override { |
| if (def_.input_size() > 1) { |
| return vector<OperatorDef>{CreateOperatorDef( |
| "SliceGradient", |
| "", |
| std::vector<string>{I(0), I(1), I(2), GO(0)}, |
| std::vector<string>{GI(0)})}; |
| } else { |
| return vector<OperatorDef>{CreateOperatorDef( |
| "SliceGradient", |
| "", |
| std::vector<string>{I(0), GO(0)}, |
| std::vector<string>{GI(0)})}; |
| } |
| } |
| }; |
| } |
| REGISTER_GRADIENT(Slice, GetSliceGradient); |
| } // namespace caffe2 |