blob: 6d2669949ccf01a8f35556d01cc23791451f04be [file] [log] [blame]
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "caffe2/operators/conditional_op.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
namespace caffe2 {
template <>
bool ConditionalOp<CPUContext>::RunOnDevice() {
auto& condition = Input(0);
auto& dataT = Input(1);
auto& dataF = Input(2);
// verify the inputs shape
CAFFE_ENFORCE_EQ(condition.ndim(), 1);
CAFFE_ENFORCE(dataT.ndim() >= 1);
CAFFE_ENFORCE(dataT.dims()[0] == condition.dims()[0]);
CAFFE_ENFORCE_EQ(dataT.ndim(), dataF.ndim());
for (size_t i = 0; i < dataT.dims().size(); i++) {
CAFFE_ENFORCE(dataT.dims().at(i) == dataF.dims().at(i));
}
const auto innerSize = dataT.size_from_dim(1);
const auto innerSizeBytes = innerSize * dataT.meta().itemsize();
CAFFE_ENFORCE(innerSize * dataF.meta().itemsize() == innerSizeBytes);
// initialize output shape
auto* dataOut = Output(0);
const auto* condPtr = condition.template data<bool>();
dataOut->ResizeLike(dataT);
auto* outPtr = (char*)dataOut->raw_mutable_data(dataT.meta());
// perform conditional op along first dimension
const auto* ptrT = (char*)dataT.raw_data();
const auto* ptrF = (char*)dataF.raw_data();
for (TIndex i = 0; i < condition.size(); i++) {
auto* dst = outPtr + i * innerSizeBytes;
if (condPtr[i]) {
context_.template CopyItems<CPUContext, CPUContext>(
dataT.meta(), innerSize, ptrT + i * innerSizeBytes, dst);
} else {
context_.template CopyItems<CPUContext, CPUContext>(
dataF.meta(), innerSize, ptrF + i * innerSizeBytes, dst);
}
}
return true;
}
REGISTER_CPU_OPERATOR(Conditional, ConditionalOp<CPUContext>);
OPERATOR_SCHEMA(Conditional)
.NumInputs(3)
.NumOutputs(1)
.SetDoc(R"DOC(
Given a 1-D tensor of boolean values, apply conditional operator along the first
dimension of DataT and DataF and return DataO. Note, DataT and DataF must
have the exact same shape and type.
)DOC")
.Input(0, "Condition", "Boolean tensor to select DataT or DataF")
.Input(1, "DataT", "Data to use when True")
.Input(2, "DataF", "Data to use when False")
.Output(0, "DataO", "Output data after applying ConditionalOp");
NO_GRADIENT(Conditional);
} // caffe2