| import os |
| import contextlib |
| import textwrap |
| import itertools |
| from typing import List, Dict, Optional, Iterator, Tuple, Set, Callable, Any, TypeVar, Union, Sequence, Iterable |
| import yaml |
| from enum import Enum |
| from collections import OrderedDict, defaultdict |
| import argparse |
| import pathlib |
| import functools |
| import json |
| from dataclasses import dataclass |
| |
| from tools.codegen.code_template import CodeTemplate |
| from tools.codegen.model import * |
| from tools.codegen.api.types import * |
| import tools.codegen.api.cpp as cpp |
| import tools.codegen.api.dispatcher as dispatcher |
| import tools.codegen.api.native as native |
| import tools.codegen.api.meta as meta |
| import tools.codegen.local as local |
| from tools.codegen.selective_build.selector import SelectiveBuilder |
| |
| try: |
| # use faster C loader if available |
| from yaml import CLoader as Loader |
| except ImportError: |
| from yaml import Loader # type: ignore |
| |
| # Welcome to the ATen code generator v2! The ATen code generator is |
| # responsible for parsing native_functions.yaml and then generating |
| # various generated files (e.g., TypeDefault.cpp) based on the operators |
| # defined in this file. This means that the code generator knows how to |
| # parse function schema, and then translate this into various C++ types |
| # and boilerplate code. |
| # |
| # Some things to know about this file when you modify it: |
| # |
| # - This file has STRICT mypy typechecking. Typecheck it with |
| # `mypy --config mypy-strict.ini` in the root source directory |
| # |
| # - Most of the heavy lifting lives in external modules: |
| # - 'model' has the data model for native_functions.yaml. The classes |
| # in those file represent what you see when you look at |
| # a native_functions.yaml |
| # - 'api' has conversions for how to translate JIT schema into |
| # the various C++ APIs that the codegen interacts with. There |
| # are in fact THREE different C++ APIs: the public C++ API, |
| # the dispatcher API, and the legacy disaptcher API. See each |
| # of these respective files for more information |
| |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| # |
| # HELPER FUNCTIONS |
| # |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| |
| # Conveniently add error context to exceptions raised. Lets us |
| # easily say that an error occurred while processing a specific |
| # context. |
| @contextlib.contextmanager |
| def context(msg: str) -> Iterator[None]: |
| try: |
| yield |
| except Exception as e: |
| # TODO: this does the wrong thing with KeyError |
| msg = textwrap.indent(msg, ' ') |
| msg = f'{e.args[0]}\n{msg}' if e.args else msg |
| e.args = (msg,) + e.args[1:] |
| raise |
| |
| # A custom loader for YAML to let us also keep track of line numbers |
| # of each entry in the YAML file |
| class LineLoader(Loader): |
| def construct_mapping(self, node, deep=False): # type: ignore |
| mapping = super().construct_mapping(node, deep=deep) # type: ignore |
| # Add 1 so line numbering starts at 1 |
| mapping['__line__'] = node.start_mark.line + 1 |
| return mapping |
| |
| # Parse native_functions.yaml into a sequence of NativeFunctions |
| def parse_native_yaml(path: str) -> List[NativeFunction]: |
| with open(path, 'r') as f: |
| es = yaml.load(f, Loader=LineLoader) |
| assert isinstance(es, list) |
| rs: List[NativeFunction] = [] |
| for e in es: |
| assert isinstance(e.get('__line__'), int), e |
| loc = Location(path, e['__line__']) |
| funcs = e.get('func') |
| with context(f'in {loc}:\n {funcs}'): |
| rs.append(NativeFunction.from_yaml(e, loc)) |
| return rs |
| |
| T = TypeVar('T') |
| S = TypeVar('S') |
| |
| F = TypeVar('F', NativeFunction, StructuredNativeFunctions, Union[NativeFunction, StructuredNativeFunctions]) |
| |
| @contextlib.contextmanager |
| def native_function_manager(g: Union[StructuredNativeFunctions, NativeFunction]) -> Iterator[None]: |
| if isinstance(g, StructuredNativeFunctions): |
| # By default, we associate all errors with structured native functions |
| # with the out variant. In some cases, it might be better to have |
| # a more specific place to hang things; if so, use |
| # native_function_manager again on the inside |
| f = g.out |
| else: |
| f = g |
| with context(f'in {f.loc}:\n {f.func}'): |
| with local.parametrize( |
| use_c10_dispatcher=f.use_c10_dispatcher, |
| ): |
| yield |
| |
| # Given a function that operates on NativeFunction, wrap it into a new function |
| # that sets some appropriate context managers for that native function. |
| # YOU MUST WRAP FUNCTIONS IN THIS for calls to api modules to be sound |
| # (you will get an error if we try to access the local variables without having |
| # set them). |
| def with_native_function(func: Callable[[F], T]) -> Callable[[F], T]: |
| @functools.wraps(func) |
| def wrapper(f: F) -> T: |
| with native_function_manager(f): |
| return func(f) |
| return wrapper |
| |
| def method_with_native_function(func: Callable[[S, F], T]) -> Callable[[S, F], T]: |
| @functools.wraps(func) |
| def wrapper(slf: S, f: F) -> T: |
| with native_function_manager(f): |
| return func(slf, f) |
| return wrapper |
| |
| # These two functions purposely return generators in analogy to map() |
| # so that you don't mix up when you need to list() them |
| |
| # Map over function that may return None; omit Nones from output sequence |
| def mapMaybe(func: Callable[[T], Optional[S]], xs: Iterable[T]) -> Iterator[S]: |
| for x in xs: |
| r = func(x) |
| if r is not None: |
| yield r |
| |
| # Map over function that returns sequences and cat them all together |
| def concatMap(func: Callable[[T], Sequence[S]], xs: Iterable[T]) -> Iterator[S]: |
| for x in xs: |
| for r in func(x): |
| yield r |
| |
| def cpp_string(s: str) -> str: |
| """Convert a python string into a c++ string literal """ |
| s = s.replace('\\', '\\\\') |
| s = s.replace('"', '\\"') |
| s = s.replace('\a', '\\a') |
| s = s.replace('\b', '\\b') |
| s = s.replace('\f', '\\f') |
| s = s.replace('\n', '\\n') |
| s = s.replace('\v', '\\v') |
| s = s.replace('\t', '\\t') |
| return f'"{s}"' |
| |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| # |
| # C++ CODE GENERATION |
| # |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| |
| # Most functions in this section are curried: they consist of a function |
| # that takes some parameters (e.g., what is to be generated) which itself |
| # returns a function that actually maps NativeFunction to the code |
| # to be generated. This pattern makes it convenient to use map, concatMap |
| # and similar functional combinators. |
| |
| # Many of these functions share logic for defining both the definition |
| # and declaration (for example, the function signature is the same), so |
| # we organize them into one function that takes a Target to say which |
| # code we want. |
| Target = Enum('Target', ('DEFINITION', 'DECLARATION', 'REGISTRATION')) |
| |
| # Dispatch keys that "support all backends". These codegen slightly differently |
| # then backend specific keys. |
| def is_generic_dispatch_key(dk: str) -> bool: |
| return dk in {'DefaultBackend', 'Math'} |
| |
| # CUDA specific dispatch keys |
| def is_cuda_dispatch_key(dk: str) -> bool: |
| return 'CUDA' in dk |
| |
| # Structured kernel generation is only supported for certain key types; |
| # otherwise use old-style |
| def is_structured_dispatch_key(dk: str) -> bool: |
| return dk in {'CUDA', 'CPU'} |
| |
| # Generates RegisterSchema.cpp. Depending on the selector, either |
| # all schemas are registered, or only some are (in the case of |
| # selective build) |
| @dataclass(frozen=True) |
| class RegisterSchema: |
| selector: SelectiveBuilder |
| |
| @method_with_native_function |
| def __call__(self, f: NativeFunction) -> Optional[str]: |
| op_name = f"aten::{f.func.name}" |
| if not self.selector.is_operator_selected(op_name): |
| return None |
| return f'm.def({cpp_string(str(f.func))});\n' |
| |
| # Generates Register{dispatch}.cpp (e.g., RegisterCPU.cpp). |
| # |
| # - The primary function of this file is to register all of the |
| # implementations for the given dispatch key to the dispatcher, |
| # so they are available for use in PyTorch. If dispatch is |
| # None, we generate schema (def) registrations and catchall |
| # registrations. |
| # - The secondary function of this file is to generate a wrapper |
| # around functions. In CPUType these wrappers do nothing |
| # (and should be removed), but in other cases they handle |
| # DeviceGuard. A small extra benefit of wrappers is they |
| # are not overloaded, so they can be used in the registration |
| # API without having to disambiguate which overload you want |
| # (as would be the case if you directly registered native:: |
| # functions). |
| @dataclass(frozen=True) |
| class RegisterDispatchKey: |
| dispatch_key: str |
| |
| # TODO: Give more precise type Union[Literal[Target.DEFINITION, |
| # Target.REGISTRATION]]; requires Literal from typing_extensions |
| # which we don't have a dep for yet. |
| target: Target |
| |
| # Selector object to determine which operators to generate |
| # registration code for. |
| selector: SelectiveBuilder |
| |
| # Whether or not we are actually code-genning for ROCm |
| rocm: bool |
| |
| def __post_init__(self) -> None: |
| assert self.target is not Target.DECLARATION |
| |
| @method_with_native_function |
| def __call__(self, f: Union[StructuredNativeFunctions, NativeFunction]) -> List[str]: |
| if isinstance(f, StructuredNativeFunctions): |
| return self.gen_structured(f) |
| elif isinstance(f, NativeFunction): |
| r = self.gen_unstructured(f) |
| return [] if r is None else [r] |
| else: |
| assert_never(f) |
| |
| def gen_structured_class_set_output(self, k: SchemaKind, parent_class: str, generate_super: bool) -> str: |
| if generate_super: |
| set_output_super = f"{parent_class}::set_output(output_idx, sizes, strides, options, names);" |
| else: |
| set_output_super = "" |
| return f""" |
| void set_output(int64_t output_idx, IntArrayRef sizes, IntArrayRef strides, |
| TensorOptions options, DimnameList names) override {{ |
| {self.gen_structured_class_set_output_body(k)} |
| if (!names.empty()) namedinference::propagate_names(outputs_[output_idx], names); |
| // super must happen after, so that downstream can use maybe_get_output |
| // to retrieve the output |
| {set_output_super} |
| }} |
| """ |
| |
| def gen_structured_class_set_output_body(self, k: SchemaKind) -> str: |
| if self.dispatch_key == 'CUDA': |
| maybe_set_guard = """ |
| auto current_device = guard_.current_device(); |
| if (C10_UNLIKELY(current_device.has_value())) { |
| TORCH_INTERNAL_ASSERT(*current_device == options.device(), |
| "structured kernels don't support multi-device outputs"); |
| } else { |
| guard_.set_device(options.device()); |
| } |
| """ |
| else: |
| maybe_set_guard = '' |
| |
| if k is SchemaKind.functional: |
| if self.dispatch_key == "Meta": |
| return """ |
| if (strides.empty()) { |
| outputs_[output_idx] = at::empty_meta(sizes, options); |
| } else { |
| TORCH_INTERNAL_ASSERT(0, "not implemented yet"); |
| } |
| """ |
| else: |
| expanded_topts = "optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), " \ |
| "options.device_opt(), options.pinned_memory_opt()" |
| if self.dispatch_key == "CPU": |
| empty_impl = "at::native::empty_cpu" |
| empty_strided_impl = "at::native::empty_strided_cpu" |
| elif self.dispatch_key == "CUDA": |
| empty_impl = "at::native::empty_cuda" |
| empty_strided_impl = "at::native::empty_strided_cuda" |
| else: |
| raise AssertionError("unsupported dispatch key") |
| return f""" |
| {maybe_set_guard} |
| if (strides.empty()) {{ |
| outputs_[output_idx] = {empty_impl}(sizes, {expanded_topts}, options.memory_format_opt()); |
| }} else {{ |
| outputs_[output_idx] = {empty_strided_impl}(sizes, strides, {expanded_topts}); |
| }} |
| """ |
| elif k is SchemaKind.inplace: |
| return maybe_set_guard |
| elif k is SchemaKind.out: |
| return f""" |
| {maybe_set_guard} |
| at::native::resize_output(outputs_[output_idx], sizes); |
| if (!strides.empty()) {{ |
| TORCH_INTERNAL_ASSERT(!options.memory_format_opt().has_value()); |
| at::native::as_strided_(outputs_[output_idx], sizes, strides); |
| }} else if (options.memory_format_opt().has_value()) {{ |
| outputs_[output_idx].get().unsafeGetTensorImpl()->empty_tensor_restride(*options.memory_format_opt()); |
| }} |
| """ |
| else: |
| assert_never(k) |
| |
| # returns the definition of a ctor, as well as how to construct |
| # this class to a variable named op |
| def gen_structured_class_ctor(self, k: SchemaKind, class_name: str) -> str: |
| if k is SchemaKind.functional: |
| return "" |
| elif k is SchemaKind.inplace: |
| # TODO: Make sure out argument is guaranteed to be self |
| return f"{class_name}(Tensor& self) : outputs_{{std::ref(self)}} {{}}" |
| elif k is SchemaKind.out: |
| # TODO: Stop hardcoding out here |
| return f"{class_name}(Tensor& out) : outputs_{{std::ref(out)}} {{}}" |
| else: |
| assert_never(k) |
| |
| def gen_structured_class( |
| self, f: NativeFunction, k: SchemaKind, *, class_name: str, parent_class: str, generate_super: bool |
| ) -> str: |
| if k is SchemaKind.functional: |
| assert len(f.func.returns) == 1, "multi-return not supported yet" |
| output_type = "Tensor" |
| elif k is SchemaKind.inplace: |
| output_type = "std::reference_wrapper<Tensor>" |
| elif k is SchemaKind.out: |
| assert len(f.func.arguments.out) == 1, "multi-out structured not supported yet" |
| output_type = "std::reference_wrapper<Tensor>" |
| |
| if self.dispatch_key == 'CUDA': |
| if self.rocm: |
| guard_field = 'c10::hip::OptionalHIPGuardMasqueradingAsCUDA guard_;' |
| else: |
| guard_field = 'c10::cuda::OptionalCUDAGuard guard_;' |
| else: |
| guard_field = '' |
| |
| return f""" |
| struct {class_name} final : public {parent_class} {{ |
| {self.gen_structured_class_ctor(k, class_name)} |
| {self.gen_structured_class_set_output(k, parent_class, generate_super)} |
| const Tensor& maybe_get_output(int64_t output_idx) override {{ |
| return outputs_[output_idx]; |
| }} |
| std::array<{output_type}, {len(f.func.returns)}> outputs_; |
| {guard_field} |
| }}; |
| """ |
| |
| def gen_structured(self, g: StructuredNativeFunctions) -> List[str]: |
| if self.dispatch_key == 'Meta': |
| assert self.dispatch_key not in g.out.dispatch, \ |
| "Do not explicitly specify Meta dispatch key on structured " \ |
| "functions, they will be automatically generated for you" |
| elif self.dispatch_key not in g.out.dispatch: |
| return [] |
| elif not is_structured_dispatch_key(self.dispatch_key): |
| return list(mapMaybe(self.gen_unstructured, g.functions())) |
| |
| # Inner helper function to close over g |
| # TODO: This function has a lot of similarity with gen_unstructured. If |
| # you edit this, you may need to also edit gen_unstructured. |
| @with_native_function |
| def gen_one(f: NativeFunction) -> Optional[str]: |
| assert self.target is not Target.DECLARATION |
| |
| # TODO: put this into StructuredNativeFunctions itself |
| functional_func = g.out.func.signature() |
| functional_sig = DispatcherSignature.from_schema(functional_func) |
| |
| # This is a little abusive; this assumes that the functionalization |
| # transformation ALWAYS refers to valid arguments in the original |
| # signature |
| functional_exprs = ', '.join(e.expr for e in functional_sig.exprs()) |
| |
| op_name = f"aten::{f.func.name}" |
| if self.target is Target.REGISTRATION and not self.selector.is_operator_selected(op_name): |
| return None |
| |
| k = f.func.kind() |
| sig = NativeSignature.from_schema(f.func) |
| |
| if self.target is Target.DEFINITION: |
| if self.dispatch_key == 'Meta': |
| class_name = f"structured_{meta.name(g)}_meta_{k.name}" |
| parent_class = f"at::meta::{meta.name(g)}" |
| else: |
| class_name = f"structured_{g.out.dispatch[self.dispatch_key]}_{k.name}" |
| parent_class = f"at::native::structured_{g.out.dispatch[self.dispatch_key]}" |
| |
| if k is SchemaKind.functional: |
| assert len(f.func.returns) == 1, "multi-return not supported yet" |
| out_expr = "op.outputs_[0]" |
| ret_expr = "std::move(op.outputs_[0])" # small optimization |
| op_init = f"{class_name} op;" |
| elif k is SchemaKind.inplace: |
| out_expr = "self" |
| ret_expr = "self" |
| op_init = f"{class_name} op(self);" |
| elif k is SchemaKind.out: |
| assert len(f.func.arguments.out) == 1, "multi-out structured not supported yet" |
| out_expr = f.func.arguments.out[0].name |
| ret_expr = out_expr |
| op_init = f"{class_name} op({out_expr});" |
| |
| if self.dispatch_key == 'Meta': |
| impl_call = "" |
| else: |
| impl_call = f"op.impl({out_expr}, {functional_exprs});" |
| |
| # For an overview of what this template code looks like, see |
| # https://github.com/pytorch/rfcs/pull/9 |
| return f"""\ |
| {self.gen_structured_class( |
| f, k, |
| class_name=class_name, |
| parent_class=parent_class, |
| generate_super=g.out.structured_inherits is not None |
| )} |
| |
| {sig.defn()} {{ |
| {op_init} |
| op.meta({functional_exprs}); |
| {impl_call} |
| return {ret_expr}; |
| }} |
| """ |
| |
| elif self.target is Target.REGISTRATION: |
| dispatcher_sig = DispatcherSignature.from_schema(f.func) |
| |
| if local.use_c10_dispatcher() is UseC10Dispatcher.full: |
| payload = f"TORCH_FN({sig.name()})" |
| elif local.use_c10_dispatcher() is UseC10Dispatcher.hacky_wrapper_for_legacy_signatures: |
| payload = f""" |
| c10::impl::hacky_wrapper_for_legacy_signatures< |
| {dispatcher_sig.type()}, |
| {len(f.func.arguments.out)} |
| >(TORCH_FN({sig.name()})) |
| """ |
| else: |
| assert local.use_c10_dispatcher() is UseC10Dispatcher.with_codegenerated_unboxing_wrapper |
| payload = f"torch::CppFunction::makeUnboxedOnly(&{sig.name()})" |
| return f'm.impl("{f.func.name}", {payload});' |
| else: |
| assert_never(self.target) |
| |
| return list(mapMaybe(gen_one, g.functions())) |
| |
| def gen_unstructured(self, f: NativeFunction) -> Optional[str]: |
| # for mypy type refinement; would be fixed by TODO on target |
| assert self.target is not Target.DECLARATION |
| |
| if self.dispatch_key not in f.dispatch: |
| return None |
| |
| op_name = f"aten::{f.func.name}" |
| if self.target is Target.REGISTRATION and not self.selector.is_operator_selected(op_name): |
| return None |
| |
| name = native.name(f.func) |
| returns_type = native.returns_type(f.func.returns) |
| args = native.arguments(f.func) |
| args_str = ', '.join(map(str, args)) |
| |
| if self.target is Target.DEFINITION: |
| impl_name = f"at::native::{f.dispatch[self.dispatch_key]}" |
| |
| args_exprs_str = ', '.join(a.name for a in args) |
| |
| return_kw = " return " |
| |
| cuda_guard = "" |
| if is_generic_dispatch_key(self.dispatch_key) or is_cuda_dispatch_key(self.dispatch_key): |
| self_arg = [f.func.arguments.self_arg.argument] if f.func.arguments.self_arg is not None else [] |
| |
| # There is precedence for which argument we use to do |
| # device guard. This describes the precedence order. |
| candidate_args = itertools.chain( |
| self_arg, |
| f.func.arguments.out, |
| f.func.arguments.flat_positional |
| ) |
| |
| # Only tensor like arguments are eligible |
| device_of = next((f'{a.name}' for a in candidate_args if a.type.is_tensor_like()), None) |
| |
| has_tensor_options = any(isinstance(a.argument, TensorOptionsArguments) for a in args) |
| |
| if local.use_c10_dispatcher() == UseC10Dispatcher.full: |
| cuda_guard_from_tensor_options = """\ |
| const DeviceGuard device_guard(device_or_default(device)); |
| """ |
| else: |
| assert local.use_c10_dispatcher() in [UseC10Dispatcher.with_codegenerated_unboxing_wrapper, |
| UseC10Dispatcher.hacky_wrapper_for_legacy_signatures] |
| cuda_guard_from_tensor_options = """\ |
| const DeviceGuard device_guard(options.device()); |
| """ |
| |
| # TODO: There is probably a simpler version of this that |
| # works just as well. |
| if f.device_guard and is_generic_dispatch_key(self.dispatch_key) and has_tensor_options: |
| cuda_guard = cuda_guard_from_tensor_options |
| elif f.device_guard and is_cuda_dispatch_key(self.dispatch_key) and has_tensor_options: |
| cuda_guard = f"""\ |
| globalContext().lazyInitCUDA(); |
| {cuda_guard_from_tensor_options} |
| """ |
| elif f.device_guard and device_of is not None: |
| cuda_guard = f"""\ |
| const OptionalDeviceGuard device_guard(device_of({device_of})); |
| """ |
| else: |
| cuda_guard = """\ |
| // DeviceGuard omitted |
| """ |
| |
| return f"""\ |
| {returns_type} {name}({args_str}) {{ |
| {cuda_guard}{return_kw}{impl_name}({args_exprs_str}); |
| }} |
| """ |
| |
| elif self.target is Target.REGISTRATION: |
| if f.manual_kernel_registration: |
| return None |
| else: |
| dispatcher_sig = DispatcherSignature.from_schema(f.func) |
| |
| # Figure out which signature the function is |
| if local.use_c10_dispatcher() is UseC10Dispatcher.full: |
| payload = f"TORCH_FN({name})" |
| elif local.use_c10_dispatcher() is UseC10Dispatcher.hacky_wrapper_for_legacy_signatures: |
| payload = f""" |
| c10::impl::hacky_wrapper_for_legacy_signatures< |
| {dispatcher_sig.type()}, |
| {len(f.func.arguments.out)} |
| >(TORCH_FN({name})) |
| """ |
| else: |
| assert local.use_c10_dispatcher() is UseC10Dispatcher.with_codegenerated_unboxing_wrapper |
| payload = f"torch::CppFunction::makeUnboxedOnly(&{name})" |
| |
| return f'm.impl("{f.func.name}",\n{payload});\n' |
| else: |
| assert_never(self.target) |
| |
| # Generates Function.cpp and Function.h. These files provide the |
| # functional public C++ API, and the scaffolding to call into |
| # the dispatcher from these functions. See also compute_tensor_method. |
| @dataclass(frozen=True) |
| class ComputeFunction: |
| target: Target |
| |
| @method_with_native_function |
| def __call__(self, f: NativeFunction) -> Optional[str]: |
| if f.manual_kernel_registration: |
| return None |
| if Variant.function not in f.variants: |
| return None |
| |
| name = cpp.name(f.func) |
| |
| sig_group = CppSignatureGroup.from_schema(f.func, method=False, fallback_binding=f.manual_cpp_binding) |
| |
| if self.target is Target.DECLARATION: |
| result = f"CAFFE2_API {sig_group.signature.decl()};\n" |
| if sig_group.faithful_signature is not None: |
| result += f"CAFFE2_API {sig_group.faithful_signature.decl()};\n" |
| return result |
| |
| assert self.target is Target.DEFINITION |
| |
| def generate_defn(faithful: bool) -> str: |
| dispatcher_sig = DispatcherSignature.from_schema(f.func) |
| |
| if faithful and sig_group.faithful_signature is not None: |
| sig = sig_group.faithful_signature |
| else: |
| sig = sig_group.signature |
| |
| dispatcher_exprs = dispatcher.cpparguments_exprs(f.func, method=False, api_is_faithful=faithful) |
| dispatcher_exprs_str = ', '.join(a.expr for a in dispatcher_exprs) |
| |
| return f""" |
| // aten::{f.func} |
| {sig.defn()} {{ |
| static auto op = c10::Dispatcher::singleton() |
| .findSchemaOrThrow("aten::{f.func.name.name}", "{f.func.name.overload_name}") |
| .typed<{dispatcher_sig.type()}>(); |
| return op.call({dispatcher_exprs_str}); |
| }} |
| """ |
| |
| result = generate_defn(sig_group.faithful_signature is None) |
| if sig_group.faithful_signature is not None: |
| result += generate_defn(True) |
| |
| return result |
| |
| # Generates TensorBody.h (sic) and TensorMethods.cpp. These files provide the |
| # object-oriented (method-based) public C++ API, and the scaffolding to call into |
| # the dispatcher from these functions. See also compute_function. |
| @dataclass(frozen=True) |
| class ComputeTensorMethod: |
| target: Target |
| |
| @method_with_native_function |
| def __call__(self, f: NativeFunction) -> Optional[str]: |
| if Variant.method not in f.variants: |
| return None |
| |
| assert not f.func.is_out_fn() |
| assert f.func.arguments.self_arg is not None |
| |
| name = cpp.name(f.func) |
| |
| sig_group = CppSignatureGroup.from_schema(f.func, method=True, fallback_binding=f.manual_cpp_binding) |
| |
| if self.target is Target.DECLARATION: |
| result = f"{sig_group.signature.decl()} const;\n" |
| if sig_group.faithful_signature is not None: |
| result += f"{sig_group.faithful_signature.decl()} const;\n" |
| return result |
| |
| assert self.target is Target.DEFINITION |
| |
| def generate_defn(faithful: bool) -> str: |
| dispatcher_sig = DispatcherSignature.from_schema(f.func) |
| |
| if faithful: |
| sig = sig_group.faithful_signature |
| assert sig is not None |
| else: |
| sig = sig_group.signature |
| |
| dispatcher_exprs = dispatcher.cpparguments_exprs(f.func, method=True, api_is_faithful=faithful) |
| dispatcher_exprs_str = ', '.join(a.expr for a in dispatcher_exprs) |
| |
| return f""" |
| // aten::{f.func} |
| {sig.defn(prefix="Tensor::")} const {{ |
| static auto op = c10::Dispatcher::singleton() |
| .findSchemaOrThrow("aten::{f.func.name.name}", "{f.func.name.overload_name}") |
| .typed<{dispatcher_sig.type()}>(); |
| return op.call({dispatcher_exprs_str}); |
| }} |
| """ |
| |
| result = generate_defn(faithful=False) |
| if sig_group.faithful_signature is not None: |
| result += generate_defn(faithful=True) |
| |
| return result |
| |
| # Generates ATenOpList.cpp, a runtime accessible list of all aten |
| # operators. |
| # TODO: This was historically used to help some JIT interop code |
| # figure out whether or not to treat aten namespace'd operators |
| # one way or another, we should reevaluate if this is actually needed. |
| @with_native_function |
| def compute_aten_op(f: NativeFunction) -> str: |
| return f'{{"aten::{f.func.name.name}", "{f.func.name.overload_name}"}},' |
| |
| # Generates NativeFunctions.h, a list of forward declarations of all |
| # actual kernel definitions we keep in aten/src/ATen/native/ |
| @with_native_function |
| def compute_native_function_declaration(g: Union[StructuredNativeFunctions, NativeFunction]) -> List[str]: |
| if isinstance(g, StructuredNativeFunctions): |
| # only out has dispatch |
| meta_name = meta.name(g) |
| rs = [] |
| seen = set() |
| out_args = native.arguments(g.out.func) |
| for k, n in g.out.dispatch.items(): |
| if n in seen: |
| continue |
| if not is_structured_dispatch_key(k): |
| continue |
| seen.add(n) |
| rs.append(f"""\ |
| struct CAFFE2_API structured_{n} : public at::meta::{meta_name} {{ |
| void impl({', '.join(a.str_with_default() for a in out_args)}); |
| }}; |
| """) |
| |
| seen = set() |
| for f in g.functions(): |
| returns_type = native.returns_type(f.func.returns) |
| args = native.arguments(f.func) |
| for k, n in f.dispatch.items(): |
| if n in seen: |
| continue |
| if is_structured_dispatch_key(k): |
| continue |
| seen.add(n) |
| rs.append(f"CAFFE2_API {returns_type} {n}({', '.join(a.str_with_default() for a in args)});") |
| |
| return rs |
| |
| else: |
| f = g |
| ns = list(f.dispatch.values()) |
| |
| rs = [] |
| # Sometimes a function name shows up multiple times; only generate |
| # it once! |
| seen = set() |
| for n in ns: |
| if n in seen: |
| continue |
| if "legacy::" in n: |
| continue |
| seen.add(n) |
| returns_type = native.returns_type(f.func.returns) |
| args = native.arguments(f.func) |
| rs.append(f"CAFFE2_API {returns_type} {n}({', '.join(a.str_with_default() for a in args)});") |
| |
| return rs |
| |
| def compute_meta_function_declaration(g: StructuredNativeFunctions) -> str: |
| with native_function_manager(g.out): |
| sig = g.signature() |
| name = meta.name(g) |
| args = meta.arguments(sig) |
| args_str = ', '.join(map(str, args)) |
| parent_class = g.out.structured_inherits |
| if parent_class is None: |
| parent_class = "at::impl::MetaBase" |
| return f"""\ |
| struct CAFFE2_API {name} : public {parent_class} {{ |
| void meta({args_str}); |
| }}; |
| """ |
| |
| # Generates RegisterBackendSelect.cpp, a series of kernels which provide |
| # specialized computation of dispatch key for operator signatures which cannot |
| # be easily done automatically using templating. |
| @dataclass(frozen=True) |
| class ComputeBackendSelect: |
| target: Target |
| |
| @method_with_native_function |
| def __call__(self, f: NativeFunction) -> Optional[str]: |
| if str(f.func.name.name).endswith('_like') or str(f.func.name.name).startswith('new_'): |
| return None |
| |
| name = native.name(f.func) |
| native_sig = NativeSignature.from_schema(f.func) |
| |
| if not any(isinstance(a.argument, TensorOptionsArguments) for a in native_sig.arguments()): |
| return None |
| |
| native_tensor_args = [ |
| a for a in native_sig.arguments() |
| if isinstance(a.argument, Argument) and a.argument.type.is_tensor_like() |
| ] |
| |
| dispatcher_sig = DispatcherSignature.from_schema(f.func) |
| |
| sig: Union[NativeSignature, DispatcherSignature] |
| if local.use_c10_dispatcher().dispatcher_uses_new_style(): |
| sig = dispatcher_sig |
| dispatcher_exprs = dispatcher_sig.exprs() |
| dispatch_key = "c10::computeDispatchKey(dtype, layout, device)" |
| else: |
| sig = native_sig |
| dispatcher_exprs = native_sig.dispatcher_exprs() |
| dispatch_key = "options.computeDispatchKey()" |
| |
| if self.target is Target.DEFINITION: |
| # I don't think there's actually a good reason to generate |
| # these two cases differently |
| # The first case could probably be improved though- it calls dispatchTypeId(), |
| # which looks at TLS dispatch keys- there should not be any by the time we reach backend select. |
| if native_tensor_args: |
| tensor_args = ', '.join(a.name for a in native_tensor_args) |
| compute_dk = f"""\ |
| DispatchKeySet _dk_set = c10::DispatchKeySet({dispatch_key}) | c10::detail::multi_dispatch_key_set({tensor_args}); |
| DispatchKeySet _dk_mask = c10::DispatchKeySet(DispatchKeySet::FULL_AFTER, DispatchKey::BackendSelect); |
| DispatchKey _dk = c10::impl::dispatchTypeId(_dk_set, _dk_mask);""" |
| else: |
| compute_dk = f"DispatchKey _dk = {dispatch_key};" |
| return f"""\ |
| // aten::{f.func} |
| {sig.defn(name)} {{ |
| static auto op = c10::Dispatcher::singleton() |
| .findSchemaOrThrow("aten::{f.func.name.name}", "{f.func.name.overload_name}") |
| .typed<{dispatcher_sig.type()}>(); |
| {compute_dk} |
| return op.callWithDispatchKey(_dk, {', '.join(a.expr for a in dispatcher_exprs)}); |
| }} |
| """ |
| elif self.target is Target.REGISTRATION: |
| if local.use_c10_dispatcher().dispatcher_uses_new_style(): |
| return f"""m.impl("aten::{f.func.name}", TORCH_FN({name}));""" |
| else: |
| assert local.use_c10_dispatcher() is UseC10Dispatcher.with_codegenerated_unboxing_wrapper |
| return f"""m.impl_UNBOXED("aten::{f.func.name}", {name});""" |
| elif self.target is Target.DECLARATION: |
| raise AssertionError() |
| else: |
| assert_never(self.target) |
| |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| # |
| # YAML CODE GENERATION |
| # |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| |
| def dict_representer(dumper: Any, data: Any) -> Any: |
| return dumper.represent_dict(data.items()) |
| |
| def format_yaml(data: object) -> str: |
| noalias_dumper = yaml.dumper.SafeDumper |
| noalias_dumper.ignore_aliases = lambda self, data: True # type: ignore |
| # Support serializing OrderedDict |
| noalias_dumper.add_representer(OrderedDict, dict_representer) # type: ignore |
| # Some yaml parsers (e.g. Haskell's) don't understand line breaks. |
| # width=float('Inf') turns off optional line breaks and improves |
| # the portability of the outputted yaml. |
| return yaml.dump(data, default_flow_style=False, Dumper=noalias_dumper, width=float('Inf')) # type: ignore |
| |
| # For some reason, some defaults we write to YAML are written as native |
| # YAML objects, rather than doing them uniformly as strings. This |
| # function detects those cases and converts them into native Python |
| # objects. |
| def pythonify_default(s: str) -> object: |
| if s == 'true': |
| return True |
| elif s == 'false': |
| return False |
| |
| try: |
| return int(s) |
| except ValueError: |
| try: |
| return float(s) |
| except ValueError: |
| return s |
| |
| # What is a dynamic type? Over time, the semantic meaning of |
| # dynamic type has degraded to meaninglessness (in the old days, |
| # it captured dtype-ness of types, but that has gone away with |
| # the removal of TH). These days, it's mostly the same thing as |
| # the C++ API argument type, except that Tensor and Tensor? |
| # arguments simply present as Tensor. |
| # |
| # TODO: Get rid of dynamic_type, after getting tools/autograd |
| # to use the new codegen framework |
| def dynamic_type(t: Type) -> str: |
| if isinstance(t, OptionalType): |
| return dynamic_type(t.elem) |
| # Note we don't use t.is_tensor_like() here because it would |
| # also include Tensor[] |
| if str(t) == 'Tensor': |
| return 'Tensor' |
| return cpp.argumenttype_type(t, mutable=False) |
| |
| def compute_method_of_yaml(variants: Set[Variant]) -> List[str]: |
| # This is written out explicitly to ensure that Tensor and |
| # namespace are put into the list in the right order |
| method_of = ['Type'] |
| if Variant.method in variants: |
| method_of.append('Tensor') |
| if Variant.function in variants: |
| method_of.append('namespace') |
| return method_of |
| |
| def compute_returns_yaml(f: NativeFunction) -> Tuple[List[Dict[str, str]], Dict[str, str]]: |
| # Note [name and field_name] |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| # To understand name_to_field_name, we must first talk about this |
| # schema: |
| # |
| # lstsq.X(Tensor self, Tensor A, *, Tensor(a!) X, Tensor(b!) qr) -> (Tensor(a!) solution, Tensor(b!) QR) |
| # |
| # There is something very odd about this schema: it is an out |
| # variant of the function (that is to say, it will convert into |
| # at::lstsq_out() in the C++ API), but the names of the output |
| # return arguments don't match the keyword argument names of |
| # the inputs. It TURNS OUT that in this situation, the historical |
| # Declarations.yaml we want to output is this (abbreviated to |
| # only show relevant fields): |
| # |
| # arguments: |
| # ... |
| # - field_name: solution |
| # name: X |
| # - field_name: QR |
| # name: qr |
| # ... |
| # |
| # returns: |
| # - field_name: solution |
| # name: X |
| # - field_name: QR |
| # name: qr |
| # |
| # The name of the return fields is stored in 'field_name', and the |
| # name of the arguments is stored in 'name'. So when we process |
| # arguments, we need a way to get at the corresponding return. At |
| # the moment, this is most conveniently done by constructing a |
| # mapping from name (the argument concept) to field_name (the |
| # return concept) while processing return arguments, since we don't |
| # directly maintain this correspondence in the modeling of function |
| # schema itself. |
| # |
| # See also https://github.com/pytorch/pytorch/issues/43114 |
| name_to_field_name: Dict[str, str] = {} |
| |
| # Compute the returns field of the YAML entry |
| names = cpp.return_names(f) |
| returns = [] |
| for i, (r, name) in enumerate(zip(f.func.returns, names)): |
| ret = { |
| 'dynamic_type': dynamic_type(r.type), |
| 'name': name, |
| 'type': cpp.return_type(r), |
| } |
| |
| if r.name: |
| # See Note [name and field_name] |
| ret['field_name'] = r.name |
| if f.func.is_out_fn(): |
| name_to_field_name[f.func.arguments.out[i].name] = r.name |
| |
| returns.append(ret) |
| |
| return returns, name_to_field_name |
| |
| # arguments in yaml roughly corresponds to the public C++ API |
| def compute_cpp_argument_yaml(cpp_a: CppArgument, *, schema_order: bool, kwarg_only_set: Set[str], |
| out_arg_set: Set[str], name_to_field_name: Dict[str, str]) -> object: |
| if isinstance(cpp_a.argument, TensorOptionsArguments): |
| arg: Dict[str, object] = { |
| 'annotation': None, |
| 'dynamic_type': 'TensorOptions', |
| 'is_nullable': False, |
| 'name': cpp_a.name, |
| 'type': cpp_a.type, |
| 'kwarg_only': True, |
| } |
| if cpp_a.default is not None: |
| arg['default'] = cpp_a.default |
| return arg |
| elif isinstance(cpp_a.argument, SelfArgument): |
| raise AssertionError() |
| elif isinstance(cpp_a.argument, Argument): |
| return compute_argument_yaml( |
| cpp_a.argument, schema_order=schema_order, |
| kwarg_only_set=kwarg_only_set, out_arg_set=out_arg_set, name_to_field_name=name_to_field_name) |
| |
| def compute_argument_yaml(a: Argument, *, schema_order: bool, kwarg_only_set: Set[str], |
| out_arg_set: Set[str], name_to_field_name: Dict[str, str]) -> object: |
| arg: Dict[str, object] = { |
| 'annotation': str(a.annotation) if a.annotation else None, |
| 'dynamic_type': dynamic_type(a.type), |
| 'is_nullable': a.type.is_nullable(), |
| 'name': a.name, |
| 'type': cpp.argument_type(a), |
| } |
| if a.default is not None: |
| arg['default'] = pythonify_default(cpp.default_expr(a.default, a.type)) |
| if a.name in kwarg_only_set: |
| arg['kwarg_only'] = True |
| if a.name in out_arg_set: |
| arg['output'] = True |
| arg['allocate'] = True |
| # See Note [name and field_name] |
| if a.name in name_to_field_name: |
| arg['field_name'] = name_to_field_name[a.name] |
| # Historically, booleans don't get their size recorded, because it |
| # is already built into the cpp type (e.g., std::array<bool, 4>) |
| l = a.type.is_list_like() |
| if l is not None and l.size is not None and str(l.elem) != 'bool': |
| arg['size'] = l.size |
| return arg |
| |
| @with_native_function |
| def compute_declaration_yaml(f: NativeFunction) -> object: |
| returns, name_to_field_name = compute_returns_yaml(f) |
| |
| # These sets are used to conveniently test if an argument is a |
| # kwarg-only or out argument |
| kwarg_only_set = set(a.name for a in f.func.arguments.flat_kwarg_only) |
| out_arg_set = set(a.name for a in f.func.arguments.out) |
| |
| sig_group = CppSignatureGroup.from_schema(f.func, method=False, fallback_binding=False) |
| cpp_args = sig_group.signature.arguments() |
| arguments = [ |
| compute_cpp_argument_yaml( |
| cpp_a, schema_order=False, |
| kwarg_only_set=kwarg_only_set, out_arg_set=out_arg_set, name_to_field_name=name_to_field_name) |
| for cpp_a in cpp_args |
| ] |
| |
| schema_order_jit_arguments = list(f.func.schema_order_arguments()) |
| |
| schema_order_arguments = [ |
| compute_argument_yaml( |
| a, schema_order=True, |
| kwarg_only_set=kwarg_only_set, out_arg_set=out_arg_set, name_to_field_name=name_to_field_name) |
| for a in schema_order_jit_arguments |
| ] |
| |
| cpp_schema_order_types = [ |
| # NB: method here doesn't matter |
| cpp.argument(a, method=False).type for a in schema_order_jit_arguments |
| ] |
| |
| cpp_returns = cpp.returns_type(f.func.returns) |
| schema_order_cpp_signature = f"{cpp_returns} ({', '.join(cpp_schema_order_types)})" |
| |
| is_factory_method = any(isinstance(a.argument, TensorOptionsArguments) for a in cpp_args) \ |
| and Variant.method not in f.variants |
| |
| return OrderedDict([ |
| ('name', cpp.name(f.func)), |
| ('operator_name', str(f.func.name.name)), |
| ('overload_name', str(f.func.name.overload_name)), |
| ('use_c10_dispatcher', f.use_c10_dispatcher.name), |
| ('manual_kernel_registration', f.manual_kernel_registration), |
| ('category_override', f.category_override if f.category_override is not None else ''), |
| ('matches_jit_signature', True), |
| ('schema_string', f'aten::{f.func}'), |
| ('arguments', arguments), |
| ('schema_order_cpp_signature', schema_order_cpp_signature), |
| ('schema_order_arguments', schema_order_arguments), |
| ('method_of', compute_method_of_yaml(f.variants)), |
| ('mode', 'native'), |
| ('python_module', '' if f.python_module is None else f.python_module), |
| ('returns', returns), |
| ('inplace', f.func.name.name.inplace), |
| ('is_factory_method', is_factory_method), |
| ('abstract', f.is_abstract), |
| ('device_guard', f.device_guard), |
| ('with_gil', False), |
| ('deprecated', False), |
| ('has_math_kernel', 'Math' in f.dispatch), |
| ]) |
| |
| @with_native_function |
| def compute_registration_declarations(f: NativeFunction) -> str: |
| name = dispatcher.name(f.func) |
| returns_type = dispatcher.returns_type(f.func.returns) |
| args = dispatcher.arguments(f.func) |
| args_str = ', '.join(map(str, args)) |
| comment_data : Dict[str, str] = { |
| 'schema': f'aten::{f.func}', |
| # TODO: What exactly is the semantics of the 'dispatch' field? |
| 'dispatch': str(f.dispatch.keys() != {'Math'}), |
| 'default': str(any(is_generic_dispatch_key(k) for k in f.dispatch)) |
| } |
| return f"""{returns_type} {name}({args_str}); // {json.dumps(comment_data)} |
| """ |
| |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| # |
| # RUN IT ALL |
| # |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| |
| @functools.lru_cache(maxsize=None) |
| def _read_template(template_fn: str) -> CodeTemplate: |
| return CodeTemplate.from_file(template_fn) |
| |
| # A small abstraction for writing out generated files and keeping track |
| # of what files have been written (so you can write out a list of output |
| # files) |
| class FileManager: |
| install_dir: str |
| template_dir: str |
| dry_run: bool |
| filenames: Set[str] |
| |
| def __init__(self, install_dir: str, template_dir: str, dry_run: bool) -> None: |
| self.install_dir = install_dir |
| self.template_dir = template_dir |
| self.filenames = set() |
| self.dry_run = dry_run |
| |
| def _write_if_changed(self, filename: str, contents: str) -> None: |
| old_contents: Optional[str] |
| try: |
| with open(filename, 'r') as f: |
| old_contents = f.read() |
| except IOError: |
| old_contents = None |
| if contents != old_contents: |
| with open(filename, 'w') as f: |
| f.write(contents) |
| |
| def write_with_template(self, filename: str, template_fn: str, |
| env_callable: Callable[[], Union[str, Dict[str, object]]]) -> None: |
| filename = '{}/{}'.format(self.install_dir, filename) |
| assert filename not in self.filenames, "duplicate file write {filename}" |
| self.filenames.add(filename) |
| if not self.dry_run: |
| env = env_callable() |
| if isinstance(env, dict): |
| # TODO: Update the comment reference to the correct location |
| if 'generated_comment' not in env: |
| comment = "@" + "generated by aten/src/ATen/gen.py" |
| comment += " from {}".format(os.path.basename(template_fn)) |
| env['generated_comment'] = comment |
| template = _read_template(os.path.join(self.template_dir, template_fn)) |
| self._write_if_changed(filename, template.substitute(env)) |
| elif isinstance(env, str): |
| self._write_if_changed(filename, env) |
| else: |
| assert_never(env) |
| |
| |
| def write(self, filename: str, env_callable: Callable[[], Union[str, Union[str, Dict[str, object]]]]) -> None: |
| self.write_with_template(filename, filename, env_callable) |
| |
| def write_outputs(self, filename: str) -> None: |
| """Write a file containing the list of all outputs which are |
| generated by this script.""" |
| self._write_if_changed( |
| filename, |
| ''.join(name + ";" for name in sorted(self.filenames))) |
| |
| def get_custom_build_selector( |
| provided_op_registration_allowlist: Optional[List[str]], |
| op_selection_yaml_path: Optional[str]) -> SelectiveBuilder: |
| assert not ( |
| provided_op_registration_allowlist is not None and |
| op_selection_yaml_path is not None), ( |
| "Both provided_op_registration_allowlist and " + |
| "op_selection_yaml_path can NOT be provided at the " + |
| "same time.") |
| |
| op_registration_allowlist: Optional[Set[str]] = None |
| if provided_op_registration_allowlist is not None: |
| op_registration_allowlist = set(provided_op_registration_allowlist) |
| |
| if op_registration_allowlist is not None: |
| selector = SelectiveBuilder.from_legacy_op_registration_allow_list( |
| op_registration_allowlist, |
| True, |
| False, |
| ) |
| elif op_selection_yaml_path is not None: |
| selector = SelectiveBuilder.from_yaml_path(op_selection_yaml_path) |
| else: |
| selector = SelectiveBuilder.get_nop_selector() |
| |
| return selector |
| |
| def main() -> None: |
| parser = argparse.ArgumentParser(description='Generate ATen source files') |
| parser.add_argument( |
| '-s', |
| '--source-path', |
| help='path to source directory for ATen', |
| default='aten/src/ATen') |
| parser.add_argument( |
| '-o', |
| '--output-dependencies', |
| help='output a list of dependencies into the given file and exit') |
| parser.add_argument( |
| '-d', '--install_dir', help='output directory', |
| default='build/aten/src/ATen') |
| parser.add_argument( |
| '--rocm', |
| action='store_true', |
| help='reinterpret CUDA as ROCm/HIP and adjust filepaths accordingly') |
| # TODO: --op_registration_whitelist will be removed when all call-sites |
| # for gen.py are moved over to using the operator YAML file for mobile |
| # custom build. |
| parser.add_argument( |
| '--op_registration_whitelist', |
| nargs='*', |
| help='filter op registrations by the whitelist (if set); ' |
| 'each item is `namespace`::`operator name` without overload name; ' |
| 'e.g.: aten::empty aten::conv2d ...') |
| parser.add_argument( |
| '--op_selection_yaml_path', |
| help='Provide a path to the operator selection (for custom build) YAML ' |
| 'that contains the information about the set of selected operators ' |
| 'and their categories (training, ...). Each operator is either a ' |
| 'full operator name with overload or just a bare operator name. ' |
| 'The operator names also contain the namespace prefix (e.g. aten::)') |
| parser.add_argument( |
| '--backend_whitelist', |
| nargs='*', |
| help='filter dispatch backend by the whitelist (if set), ' |
| 'e.g.: CPU CUDA QuantizedCPU ...') |
| parser.add_argument( |
| '--force_schema_registration', |
| action='store_true', |
| help='force it to generate schema-only registrations for all ops, including' |
| 'those that are not listed on --op_registration_whitelist') |
| options = parser.parse_args() |
| |
| selector = get_custom_build_selector( |
| options.op_registration_whitelist, |
| options.op_selection_yaml_path, |
| ) |
| |
| native_functions = parse_native_yaml(os.path.join(options.source_path, 'native/native_functions.yaml')) |
| |
| pre_grouped_native_functions: Dict[FunctionSchema, Dict[SchemaKind, NativeFunction]] |
| pre_grouped_native_functions = defaultdict(dict) |
| for f in native_functions: |
| d = pre_grouped_native_functions[f.func.signature()] |
| assert f.func.kind() not in d |
| d[f.func.kind()] = f |
| |
| def flatten_pre_group(d: Dict[SchemaKind, NativeFunction]) -> Sequence[Union[NativeFunction, StructuredNativeFunctions]]: |
| r = StructuredNativeFunctions.from_dict(d) |
| if r is None: |
| return list(d.values()) |
| else: |
| return [r] |
| |
| # TODO: how come ValuesView isn't a Sequence lol |
| grouped_native_functions = list(concatMap(flatten_pre_group, list(pre_grouped_native_functions.values()))) |
| structured_native_functions = [g for g in grouped_native_functions if isinstance(g, StructuredNativeFunctions)] |
| |
| template_dir = os.path.join(options.source_path, "templates") |
| |
| # NB: It is mandatory to NOT use os.path.join here, as the install directory |
| # will eventually be ingested by cmake, which does not respect Windows style |
| # path slashes. If you switch this to use os.path.join, you'll get an error |
| # like: |
| # |
| # Syntax error in cmake code when parsing string |
| # |
| # C:/Jenkins/workspace/pytorch-builds/pytorch-win-ws2016-cuda9-cudnn7-py3-build/build/aten/src/ATen\core/TensorMethods.h |
| # |
| # Invalid character escape '\c'. |
| core_install_dir = f'{options.install_dir}/core' |
| pathlib.Path(core_install_dir).mkdir(parents=True, exist_ok=True) |
| |
| def make_file_manager(install_dir: str) -> FileManager: |
| return FileManager(install_dir=install_dir, template_dir=template_dir, dry_run=options.output_dependencies) |
| |
| core_fm = make_file_manager(core_install_dir) |
| cpu_fm = make_file_manager(options.install_dir) |
| cuda_fm = make_file_manager(options.install_dir) |
| |
| extra_cuda_headers = '''\ |
| #include <c10/cuda/CUDAGuard.h> |
| #include <ATen/cuda/ATenCUDAGeneral.h> |
| #include <ATen/cuda/CUDADevice.h> |
| #include <ATen/cuda/CUDAContext.h>''' |
| if options.rocm: |
| extra_cuda_headers = '''\ |
| #include <ATen/hip/impl/HIPGuardImplMasqueradingAsCUDA.h> |
| #include <ATen/hip/ATenHIPGeneral.h> |
| #include <ATen/hip/HIPDevice.h> |
| #include <ATen/hip/HIPContext.h>''' |
| |
| # NB: substrings in these dispatch keys matter, we do tests to see if |
| # a key contains, e.g., CUDA to classify it as a CUDA backend |
| dispatch_keys = [ |
| "CPU", |
| "SparseCPU", |
| "MkldnnCPU", |
| "CUDA", |
| "SparseCUDA", |
| "QuantizedCPU", |
| "QuantizedCUDA", |
| "Math", |
| "DefaultBackend", |
| # Meta is a magic key: it is automatically generated for structured |
| # kernels |
| "Meta", |
| ] |
| if options.backend_whitelist: |
| dispatch_keys = [k for k in dispatch_keys if is_generic_dispatch_key(k) or k in options.backend_whitelist] |
| |
| for dispatch_key in dispatch_keys: |
| cpp_template = 'RegisterDispatchKey.cpp' |
| |
| fm = cuda_fm if is_cuda_dispatch_key(dispatch_key) else cpu_fm |
| |
| fm.write_with_template(f'Register{dispatch_key}.cpp', cpp_template, lambda: { |
| 'extra_cuda_headers': extra_cuda_headers if is_cuda_dispatch_key(dispatch_key) else '', |
| 'legacy_th_headers': |
| '#include <ATen/LegacyTHFunctionsCPU.h>' if dispatch_key == "CPU" else |
| '#include <ATen/LegacyTHFunctionsCUDA.h>' if dispatch_key == "CUDA" else |
| '', |
| 'DispatchKey': dispatch_key, |
| 'dispatch_definitions': list(concatMap( |
| RegisterDispatchKey(dispatch_key, Target.DEFINITION, selector, rocm=options.rocm), |
| grouped_native_functions |
| )), |
| 'dispatch_registrations': list(concatMap( |
| RegisterDispatchKey(dispatch_key, Target.REGISTRATION, selector, rocm=options.rocm), |
| grouped_native_functions |
| )), |
| }) |
| del fm |
| |
| # BackendSelect is generated specially |
| cpu_fm.write('RegisterBackendSelect.cpp', lambda: { |
| 'backend_select_method_definitions': |
| list(mapMaybe(ComputeBackendSelect(Target.DEFINITION), native_functions)), |
| 'backend_select_function_registrations': |
| list(mapMaybe(ComputeBackendSelect(Target.REGISTRATION), native_functions)), |
| }) |
| |
| cpu_fm.write('MetaFunctions.h', lambda: { |
| 'declarations': list(map(compute_meta_function_declaration, structured_native_functions)), |
| }) |
| |
| schema_selector = selector |
| if options.force_schema_registration: |
| schema_selector = SelectiveBuilder.get_nop_selector() |
| cpu_fm.write('RegisterSchema.cpp', lambda: { |
| 'schema_registrations': list(mapMaybe(RegisterSchema(schema_selector), native_functions)), |
| }) |
| |
| cpu_fm.write('Functions.h', lambda: { |
| 'function_declarations': list(mapMaybe(ComputeFunction(Target.DECLARATION), native_functions)), |
| }) |
| cpu_fm.write('Functions.cpp', lambda: { |
| 'function_definitions': list(mapMaybe(ComputeFunction(Target.DEFINITION), native_functions)), |
| }) |
| core_fm.write('TensorBody.h', lambda: { |
| 'tensor_method_declarations': list(mapMaybe(ComputeTensorMethod(Target.DECLARATION), native_functions)), |
| }) |
| core_fm.write('TensorMethods.cpp', lambda: { |
| 'tensor_method_definitions': list(mapMaybe(ComputeTensorMethod(Target.DEFINITION), native_functions)), |
| }) |
| core_fm.write('ATenOpList.cpp', lambda: { |
| 'aten_ops': list(mapMaybe(compute_aten_op, native_functions)), |
| }) |
| cpu_fm.write('NativeFunctions.h', lambda: { |
| 'native_function_declarations': list(concatMap(compute_native_function_declaration, grouped_native_functions)), |
| }) |
| |
| cpu_fm.write('Declarations.yaml', lambda: format_yaml([compute_declaration_yaml(f) for f in native_functions])) |
| cpu_fm.write('RegistrationDeclarations.h', lambda: { |
| 'registration_declarations': [compute_registration_declarations(f) for f in native_functions], |
| }) |
| |
| if options.output_dependencies: |
| cpu_fm.write_outputs(options.output_dependencies) |
| core_fm.write_outputs(f"{options.output_dependencies}-core") |
| cuda_fm.write_outputs(f"{options.output_dependencies}-cuda") |
| |
| if __name__ == '__main__': |
| main() |