blob: f2f6edb8898321f9604c873b23dcf21957f04ec9 [file] [log] [blame]
from tools.codegen.model import *
from tools.codegen.api.types import *
import tools.codegen.local as local
from typing import Optional, Sequence, Union, List
# This file describes the translation of JIT schema to the public C++
# API, which is what people use when they call functions like at::add.
#
# Prominent characteristics of the C++ API:
#
# - dtype, layout, device and pin_memory are collected into
# a single C++ type TensorOptions (the native functions API
# also has this, but tensor options is really most relevant
# for the C++ API; it makes calling kwarg factory functions
# pleasant)
#
# - for 'use_c10_dispatcher: full' functions, optional tensors are
# represented explicitly using c10::optional
#
# - defaulting lives here (in fact, the dispatcher is completely
# oblivious of defaults!)
#
# BTW: policy on name collisions: we try not to have types with
# collisions, but functions are fair game to collide
def name(func: FunctionSchema, *, faithful_name_for_out_overloads: bool = False) -> str:
name = str(func.name.name)
if func.is_out_fn():
if faithful_name_for_out_overloads:
name += '_outf'
else:
name += '_out'
return name
# Translation of "value types" in JIT schema to C++ API type. Value
# types look the same no matter if they are argument types or return
# types. Returns None if the type in question is not a value type.
def valuetype_type(t: Type) -> Optional[str]:
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor:
return None
elif t.name == BaseTy.int:
return 'int64_t'
elif t.name == BaseTy.float:
return 'double'
elif t.name == BaseTy.str:
return 'std::string'
elif t.name in [BaseTy.bool, BaseTy.QScheme, BaseTy.Scalar,
BaseTy.ScalarType, BaseTy.Generator, BaseTy.Storage,
BaseTy.Layout, BaseTy.Device, BaseTy.MemoryFormat,
BaseTy.Dimname, BaseTy.Stream, BaseTy.ConstQuantizerPtr]:
# These C++ names line up with their schema names
return t.name.name
else:
raise AssertionError(f"unsupported type: {t}")
elif isinstance(t, OptionalType):
elem = valuetype_type(t.elem)
if elem is None:
return None
return f"c10::optional<{elem}>"
elif isinstance(t, ListType):
if str(t.elem) == 'bool':
assert t.size is not None
return f"std::array<bool,{t.size}>"
else:
return None
else:
raise AssertionError(f"unrecognized type {repr(t)}")
# Translation of types occuring in JIT arguments to a C++ argument type.
def argumenttype_type(t: Type, *, mutable: bool) -> str:
# If it's a value type, do the value type translation
r = valuetype_type(t)
if r is not None:
return r
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor:
if mutable:
return 'Tensor &'
else:
return 'const Tensor &'
else:
raise AssertionError(f"base type should have been value type {t}")
elif isinstance(t, OptionalType):
if str(t.elem) == 'Tensor':
if mutable:
return 'Tensor &' # TODO: fix this discrepancy
else:
if local.use_c10_dispatcher().dispatcher_uses_new_style():
return 'const c10::optional<Tensor>&'
else:
return 'const Tensor &'
elem = argumenttype_type(t.elem, mutable=mutable)
return f"c10::optional<{elem}>"
elif isinstance(t, ListType):
# TODO: remove these special cases, ArrayRef fallthrough works fine
if str(t.elem) == 'int':
return "IntArrayRef"
elif str(t.elem) == 'Tensor':
return "TensorList"
elif str(t.elem) == 'Dimname':
return "DimnameList"
# TODO: do something reasonable about lists of optional tensors
elif (not local.use_c10_dispatcher().dispatcher_uses_new_style()) and str(t.elem) == 'Tensor?':
return "TensorList"
elem = argumenttype_type(t.elem, mutable=mutable)
# TODO: explicitly qualify namespace here
return f"ArrayRef<{elem}>"
else:
raise AssertionError(f"unrecognized type {repr(t)}")
# Translate a JIT argument into its C++ type
def argument_type(a: Argument) -> str:
return argumenttype_type(a.type, mutable=a.is_write)
# Translation of a (non-multi) return type from JIT to C++
def returntype_type(t: Type, *, mutable: bool) -> str:
r = valuetype_type(t)
if r is not None:
return r
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor:
if mutable:
return 'Tensor &'
else:
return 'Tensor'
elif isinstance(t, ListType):
elem = returntype_type(t.elem, mutable=mutable)
assert t.size is None, f"fixed size list returns not supported: {t}"
return f"std::vector<{elem}>"
raise AssertionError(f"unrecognized return type {t}")
# Translation of a single return to its C++ type
def return_type(r: Return) -> str:
return returntype_type(r.type, mutable=r.is_write)
# Translation of a full (possibly multi) return from JIT to its C++ type
def returns_type(rs: Sequence[Return]) -> str:
if len(rs) == 0:
return 'void'
elif len(rs) == 1:
return return_type(rs[0])
else:
args = ','.join(map(return_type, rs))
return f'std::tuple<{args}>'
def return_names(f: NativeFunction) -> Sequence[str]:
returns: List[str] = []
for i, r in enumerate(f.func.returns):
# If we have an inplace function, the return argument is
# implicitly named self.
# TODO: Consider incorporating this into the data model
if f.func.name.name.inplace:
assert i == 0, "illegal inplace function with multiple returns"
name = 'self'
# If we are out function, the name is the name of the
# corresponding output function (r.name will get recorded
# in field_name later.)
elif f.func.is_out_fn():
name = f.func.arguments.out[i].name
# If the return argument is explicitly named...
elif r.name:
name_conflict = any(r.name == a.name for a in f.func.schema_order_arguments())
if name_conflict and not f.func.is_out_fn():
name = f'{r.name}_return'
else:
name = r.name
# If there is no explicit name, we just name the output result,
# unless it's a multi-return, in which case it's result0,
# result1, etc (zero-indexed)
else:
name = 'result' if len(f.func.returns) == 1 else f'result{i}'
returns.append(name)
return returns
JIT_TO_CPP_DEFAULT = {
'False': 'false',
'True': 'true',
'None': 'c10::nullopt', # UGH this one is type directed
'Mean': 'at::Reduction::Mean',
'[]': '{}',
'contiguous_format': 'MemoryFormat::Contiguous',
'long': 'at::kLong',
}
# Convert a JIT default into C++ expression representing the default
def default_expr(d: str, t: Type) -> str:
if d == 'None' and str(t) == 'Tensor?':
return '{}'
if isinstance(t, BaseType) and t.name is BaseTy.str:
# Schema allows single quotes but C++ needs double
if len(d) >= 2 and d[0] == "'" and d[-1] == "'":
s = ''
i = 1
while i + 1 < len(d):
if d[i] != '\\':
if d[i] == '"':
s += '\\"'
else:
s += d[i]
i += 1
else:
if d[i + 1] == "'":
s += "'"
else:
s += d[i:i + 2]
i += 2
return f'"{s}"'
if isinstance(t, OptionalType):
if d == 'None':
return 'c10::nullopt'
return default_expr(d, t.elem)
if isinstance(t, ListType):
if (d.startswith('[') and d.endswith(']')):
return '{' + d[1:-1] + '}'
elif t.size is None:
# NOTE: Sized lists can have scalar defaults
raise ValueError(f"Expected a list default '[...]' but found: '{d}'")
return JIT_TO_CPP_DEFAULT.get(d, d)
# Convert an argument into its C++ API form
def argument_not_this(
a: Union[Argument, TensorOptionsArguments],
) -> CppArgument:
if isinstance(a, Argument):
return CppArgument(
type=argument_type(a),
name=a.name,
default=default_expr(a.default, a.type) if a.default is not None else None,
argument=a,
)
elif isinstance(a, TensorOptionsArguments):
default = None
if all(x.default == "None" for x in a.all()):
default = '{}'
elif a.dtype.default == "long":
default = 'at::kLong' # TODO: this is wrong
return CppArgument(
type='const TensorOptions &',
name='options',
default=default,
argument=a,
)
else:
assert_never(a)
def argument(
a: Union[Argument, TensorOptionsArguments, SelfArgument],
*,
method: bool,
) -> Union[CppSingleArgumentPack, CppThisArgumentPack]:
if isinstance(a, SelfArgument):
if method:
return CppThisArgumentPack(argument=a, type=argument_type(a.argument))
else:
return CppSingleArgumentPack(argument_not_this(a.argument))
else:
return CppSingleArgumentPack(argument_not_this(a))
def argument_faithful(
a: Union[Argument, TensorOptionsArguments, SelfArgument],
*,
method: bool,
) -> CppArgumentPack:
if isinstance(a, TensorOptionsArguments):
return CppTensorOptionsArgumentPack(
argument=a,
dtype=argument_not_this(a.dtype),
layout=argument_not_this(a.layout),
device=argument_not_this(a.device),
pin_memory=argument_not_this(a.pin_memory),
)
else:
return argument(a, method=method)