| """Adds docstrings to Tensor functions""" |
| |
| import torch._C |
| from torch._C import _add_docstr as add_docstr |
| |
| |
| tensor_classes = [ |
| 'DoubleTensorBase', |
| 'FloatTensorBase', |
| 'LongTensorBase', |
| 'IntTensorBase', |
| 'ShortTensorBase', |
| 'CharTensorBase', |
| 'ByteTensorBase', |
| ] |
| |
| |
| def add_docstr_all(method, docstr): |
| for cls_name in tensor_classes: |
| cls = getattr(torch._C, cls_name) |
| try: |
| add_docstr(getattr(cls, method), docstr) |
| except AttributeError: |
| pass |
| |
| |
| add_docstr_all('abs', |
| """ |
| abs() -> Tensor |
| |
| See :func:`torch.abs` |
| """) |
| |
| add_docstr_all('abs_', |
| """ |
| abs_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.abs` |
| """) |
| |
| add_docstr_all('acos', |
| """ |
| acos() -> Tensor |
| |
| See :func:`torch.acos` |
| """) |
| |
| add_docstr_all('acos_', |
| """ |
| acos_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.acos` |
| """) |
| |
| add_docstr_all('add', |
| """ |
| add(value) |
| |
| See :func:`torch.add` |
| """) |
| |
| add_docstr_all('add_', |
| """ |
| add_(value) |
| |
| In-place version of :meth:`~Tensor.add` |
| """) |
| |
| add_docstr_all('addbmm', |
| """ |
| addbmm(beta=1, mat, alpha=1, batch1, batch2) -> Tensor |
| |
| See :func:`torch.addbmm` |
| """) |
| |
| add_docstr_all('addbmm_', |
| """ |
| addbmm_(beta=1, mat, alpha=1, batch1, batch2) -> Tensor |
| |
| In-place version of :meth:`~Tensor.addbmm` |
| """) |
| |
| add_docstr_all('addcdiv', |
| """ |
| addcdiv(value=1, tensor1, tensor2) -> Tensor |
| |
| See :func:`torch.addcdiv` |
| """) |
| |
| add_docstr_all('addcdiv_', |
| """ |
| addcdiv_(value=1, tensor1, tensor2) -> Tensor |
| |
| In-place version of :meth:`~Tensor.addcdiv` |
| """) |
| |
| add_docstr_all('addcmul', |
| """ |
| addcmul(value=1, tensor1, tensor2) -> Tensor |
| |
| See :func:`torch.addcmul` |
| """) |
| |
| add_docstr_all('addcmul_', |
| """ |
| addcmul_(value=1, tensor1, tensor2) -> Tensor |
| |
| In-place version of :meth:`~Tensor.addcmul` |
| """) |
| |
| add_docstr_all('addmm', |
| """ |
| addmm(beta=1, mat, alpha=1, mat1, mat2) -> Tensor |
| |
| See :func:`torch.addmm` |
| """) |
| |
| add_docstr_all('addmm_', |
| """ |
| addmm_(beta=1, mat, alpha=1, mat1, mat2) -> Tensor |
| |
| In-place version of :meth:`~Tensor.addmm` |
| """) |
| |
| add_docstr_all('addmv', |
| """ |
| addmv(beta=1, tensor, alpha=1, mat, vec) -> Tensor |
| |
| See :func:`torch.addmv` |
| """) |
| |
| add_docstr_all('addmv_', |
| """ |
| addmv_(beta=1, tensor, alpha=1, mat, vec) -> Tensor |
| |
| In-place version of :meth:`~Tensor.addmv` |
| """) |
| |
| add_docstr_all('addr', |
| """ |
| addr(beta=1, alpha=1, vec1, vec2) -> Tensor |
| |
| See :func:`torch.addr` |
| """) |
| |
| add_docstr_all('addr_', |
| """ |
| addr_(beta=1, alpha=1, vec1, vec2) -> Tensor |
| |
| In-place version of :meth:`~Tensor.addr` |
| """) |
| |
| add_docstr_all('all', |
| """ |
| all() -> bool |
| |
| Returns True if all elements in the tensor are non-zero, False otherwise. |
| """) |
| |
| add_docstr_all('any', |
| """ |
| any() -> bool |
| |
| Returns True if any elements in the tensor are non-zero, False otherwise. |
| """) |
| |
| add_docstr_all('apply_', |
| """ |
| apply_(callable) -> Tensor |
| |
| Applies the function :attr:`callable` to each element in the tensor, replacing |
| each element with the value returned by :attr:`callable`. |
| |
| .. note:: |
| |
| This function only works with CPU tensors and should not be used in code |
| sections that require high performance. |
| """) |
| |
| add_docstr_all('asin', |
| """ |
| asin() -> Tensor |
| |
| See :func:`torch.asin` |
| """) |
| |
| add_docstr_all('asin_', |
| """ |
| asin_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.asin` |
| """) |
| |
| add_docstr_all('atan', |
| """ |
| atan() -> Tensor |
| |
| See :func:`torch.atan` |
| """) |
| |
| add_docstr_all('atan2', |
| """ |
| atan2(other) -> Tensor |
| |
| See :func:`torch.atan2` |
| """) |
| |
| add_docstr_all('atan2_', |
| """ |
| atan2_(other) -> Tensor |
| |
| In-place version of :meth:`~Tensor.atan2` |
| """) |
| |
| add_docstr_all('atan_', |
| """ |
| atan_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.atan` |
| """) |
| |
| add_docstr_all('baddbmm', |
| """ |
| baddbmm(beta=1, alpha=1, batch1, batch2) -> Tensor |
| |
| See :func:`torch.baddbmm` |
| """) |
| |
| add_docstr_all('baddbmm_', |
| """ |
| baddbmm_(beta=1, alpha=1, batch1, batch2) -> Tensor |
| |
| In-place version of :meth:`~Tensor.baddbmm` |
| """) |
| |
| add_docstr_all('bernoulli', |
| """ |
| bernoulli() -> Tensor |
| |
| See :func:`torch.bernoulli` |
| """) |
| |
| add_docstr_all('bernoulli_', |
| """ |
| bernoulli_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.bernoulli` |
| """) |
| |
| add_docstr_all('bmm', |
| """ |
| bmm(batch2) -> Tensor |
| |
| See :func:`torch.bmm` |
| """) |
| |
| add_docstr_all('cauchy_', |
| """ |
| cauchy_(median=0, sigma=1, *, generator=None) -> Tensor |
| |
| Fills the tensor with numbers drawn from the Cauchy distribution: |
| |
| .. math:: |
| |
| P(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - median)^2 + \sigma^2} |
| """) |
| |
| add_docstr_all('ceil', |
| """ |
| ceil() -> Tensor |
| |
| See :func:`torch.ceil` |
| """) |
| |
| add_docstr_all('ceil_', |
| """ |
| ceil_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.ceil` |
| """) |
| |
| add_docstr_all('clamp', |
| """ |
| clamp(min, max) -> Tensor |
| |
| See :func:`torch.clamp` |
| """) |
| |
| add_docstr_all('clamp_', |
| """ |
| clamp_(min, max) -> Tensor |
| |
| In-place version of :meth:`~Tensor.clamp` |
| """) |
| |
| add_docstr_all('clone', |
| """ |
| clone() -> Tensor |
| |
| Returns a copy of the tensor. The copy has the same size and data type as the |
| original tensor. |
| """) |
| |
| add_docstr_all('contiguous', |
| """ |
| contiguous() -> Tensor |
| |
| Returns a contiguous Tensor containing the same data as this tensor. If this |
| tensor is contiguous, this function returns the original tensor. |
| """) |
| |
| add_docstr_all('copy_', |
| """ |
| copy_(src, async=False, broadcast=True) -> Tensor |
| |
| Copies the elements from :attr:`src` into this tensor and returns this tensor. |
| |
| If :attr:`broadcast` is True, the source tensor must be |
| :ref:`broadcastable <broadcasting-semantics>` with this tensor. Otherwise, |
| source tensor should have the same number of elements as this tensor. |
| It may be of a different data type or reside on a different device. |
| |
| Args: |
| src (Tensor): Source tensor to copy |
| async (bool): If True and this copy is between CPU and GPU, then the copy |
| may occur asynchronously with respect to the host. For other |
| copies, this argument has no effect. |
| broadcast (bool): If True, :attr:`src` will be broadcast to the shape of |
| the underlying tensor. |
| """) |
| |
| add_docstr_all('cos', |
| """ |
| cos() -> Tensor |
| |
| See :func:`torch.cos` |
| """) |
| |
| add_docstr_all('cos_', |
| """ |
| cos_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.cos` |
| """) |
| |
| add_docstr_all('cosh', |
| """ |
| cosh() -> Tensor |
| |
| See :func:`torch.cosh` |
| """) |
| |
| add_docstr_all('cosh_', |
| """ |
| cosh_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.cosh` |
| """) |
| |
| add_docstr_all('cross', |
| """ |
| cross(other, dim=-1) -> Tensor |
| |
| See :func:`torch.cross` |
| """) |
| |
| add_docstr_all('cumprod', |
| """ |
| cumprod(dim) -> Tensor |
| |
| See :func:`torch.cumprod` |
| """) |
| |
| add_docstr_all('cumsum', |
| """ |
| cumsum(dim) -> Tensor |
| |
| See :func:`torch.cumsum` |
| """) |
| |
| add_docstr_all('data_ptr', |
| """ |
| data_ptr() -> int |
| |
| Returns the address of the first element of this tensor. |
| """) |
| |
| add_docstr_all('diag', |
| """ |
| diag(diagonal=0) -> Tensor |
| |
| See :func:`torch.diag` |
| """) |
| |
| add_docstr_all('dim', |
| """ |
| dim() -> int |
| |
| Returns the number of dimensions of this tensor. |
| """) |
| |
| add_docstr_all('dist', |
| """ |
| dist(other, p=2) -> float |
| |
| See :func:`torch.dist` |
| """) |
| |
| add_docstr_all('div', |
| """ |
| div(value) |
| |
| See :func:`torch.div` |
| """) |
| |
| add_docstr_all('div_', |
| """ |
| div_(value) |
| |
| In-place version of :meth:`~Tensor.div` |
| """) |
| |
| add_docstr_all('dot', |
| """ |
| dot(tensor2) -> float |
| |
| See :func:`torch.dot` |
| """) |
| |
| add_docstr_all('eig', |
| """ |
| eig(eigenvectors=False) -> (Tensor, Tensor) |
| |
| See :func:`torch.eig` |
| """) |
| |
| add_docstr_all('element_size', |
| """ |
| element_size() -> int |
| |
| Returns the size in bytes of an individual element. |
| |
| Example: |
| >>> torch.FloatTensor().element_size() |
| 4 |
| >>> torch.ByteTensor().element_size() |
| 1 |
| """) |
| |
| add_docstr_all('eq', |
| """ |
| eq(other) -> Tensor |
| |
| See :func:`torch.eq` |
| """) |
| |
| add_docstr_all('eq_', |
| """ |
| eq_(other) -> Tensor |
| |
| In-place version of :meth:`~Tensor.eq` |
| """) |
| |
| add_docstr_all('equal', |
| """ |
| equal(other) -> bool |
| |
| See :func:`torch.equal` |
| """) |
| |
| add_docstr_all('erf', |
| """ |
| erf() -> Tensor |
| |
| See :func:`torch.erf` |
| """) |
| |
| add_docstr_all('erfinv', |
| """ |
| erfinv() -> Tensor |
| |
| See :func:`torch.erfinv` |
| """) |
| |
| add_docstr_all('exp', |
| """ |
| exp() -> Tensor |
| |
| See :func:`torch.exp` |
| """) |
| |
| add_docstr_all('exp_', |
| """ |
| exp_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.exp` |
| """) |
| |
| add_docstr_all('exponential_', |
| """ |
| exponential_(lambd=1, *, generator=None) -> Tensor |
| |
| Fills this tensor with elements drawn from the exponential distribution: |
| |
| .. math:: |
| |
| P(x) = \lambda e^{-\lambda x} |
| """) |
| |
| add_docstr_all('fill_', |
| """ |
| fill_(value) -> Tensor |
| |
| Fills this tensor with the specified value. |
| """) |
| |
| add_docstr_all('floor', |
| """ |
| floor() -> Tensor |
| |
| See :func:`torch.floor` |
| """) |
| |
| add_docstr_all('floor_', |
| """ |
| floor_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.floor` |
| """) |
| |
| add_docstr_all('fmod', |
| """ |
| fmod(divisor) -> Tensor |
| |
| See :func:`torch.fmod` |
| """) |
| |
| add_docstr_all('fmod_', |
| """ |
| fmod_(divisor) -> Tensor |
| |
| In-place version of :meth:`~Tensor.fmod` |
| """) |
| |
| add_docstr_all('frac', |
| """ |
| frac() -> Tensor |
| |
| See :func:`torch.frac` |
| """) |
| |
| add_docstr_all('frac_', |
| """ |
| frac_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.frac` |
| """) |
| |
| add_docstr_all('gather', |
| """ |
| gather(dim, index) -> Tensor |
| |
| See :func:`torch.gather` |
| """) |
| |
| add_docstr_all('ge', |
| """ |
| ge(other) -> Tensor |
| |
| See :func:`torch.ge` |
| """) |
| |
| add_docstr_all('ge_', |
| """ |
| ge_(other) -> Tensor |
| |
| In-place version of :meth:`~Tensor.ge` |
| """) |
| |
| add_docstr_all('gels', |
| """ |
| gels(A) -> Tensor |
| |
| See :func:`torch.gels` |
| """) |
| |
| add_docstr_all('geometric_', |
| """ |
| geometric_(p, *, generator=None) -> Tensor |
| |
| Fills this tensor with elements drawn from the geometric distribution: |
| |
| .. math:: |
| |
| P(X=k) = (1 - p)^{k - 1} p |
| |
| """) |
| |
| add_docstr_all('geqrf', |
| """ |
| geqrf() -> (Tensor, Tensor) |
| |
| See :func:`torch.geqrf` |
| """) |
| |
| add_docstr_all('ger', |
| """ |
| ger(vec2) -> Tensor |
| |
| See :func:`torch.ger` |
| """) |
| |
| add_docstr_all('gesv', |
| """ |
| gesv(A) -> Tensor, Tensor |
| |
| See :func:`torch.gesv` |
| """) |
| |
| add_docstr_all('gt', |
| """ |
| gt(other) -> Tensor |
| |
| See :func:`torch.gt` |
| """) |
| |
| add_docstr_all('gt_', |
| """ |
| gt_(other) -> Tensor |
| |
| In-place version of :meth:`~Tensor.gt` |
| """) |
| |
| add_docstr_all('histc', |
| """ |
| histc(bins=100, min=0, max=0) -> Tensor |
| |
| See :func:`torch.histc` |
| """) |
| |
| add_docstr_all('index', |
| """ |
| index(m) -> Tensor |
| |
| Selects elements from this tensor using a binary mask or along a given |
| dimension. The expression ``tensor.index(m)`` is equivalent to ``tensor[m]``. |
| |
| Args: |
| m (int or ByteTensor or slice): The dimension or mask used to select elements |
| """) |
| |
| add_docstr_all('index_add_', |
| """ |
| index_add_(dim, index, tensor) -> Tensor |
| |
| Accumulate the elements of tensor into the original tensor by adding to the |
| indices in the order given in index. The shape of tensor must exactly match the |
| elements indexed or an error will be raised. |
| |
| Args: |
| dim (int): Dimension along which to index |
| index (LongTensor): Indices to select from tensor |
| tensor (Tensor): Tensor containing values to add |
| |
| Example: |
| >>> x = torch.Tensor([[1, 1, 1], [1, 1, 1], [1, 1, 1]]) |
| >>> t = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
| >>> index = torch.LongTensor([0, 2, 1]) |
| >>> x.index_add_(0, index, t) |
| >>> x |
| 2 3 4 |
| 8 9 10 |
| 5 6 7 |
| [torch.FloatTensor of size 3x3] |
| """) |
| |
| add_docstr_all('index_copy_', |
| """ |
| index_copy_(dim, index, tensor) -> Tensor |
| |
| Copies the elements of tensor into the original tensor by selecting the |
| indices in the order given in index. The shape of tensor must exactly match the |
| elements indexed or an error will be raised. |
| |
| Args: |
| dim (int): Dimension along which to index |
| index (LongTensor): Indices to select from tensor |
| tensor (Tensor): Tensor containing values to copy |
| |
| Example: |
| >>> x = torch.Tensor(3, 3) |
| >>> t = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
| >>> index = torch.LongTensor([0, 2, 1]) |
| >>> x.index_copy_(0, index, t) |
| >>> x |
| 1 2 3 |
| 7 8 9 |
| 4 5 6 |
| [torch.FloatTensor of size 3x3] |
| """) |
| |
| add_docstr_all('index_fill_', |
| """ |
| index_fill_(dim, index, val) -> Tensor |
| |
| Fills the elements of the original tensor with value :attr:`val` by selecting |
| the indices in the order given in index. |
| |
| Args: |
| dim (int): Dimension along which to index |
| index (LongTensor): Indices |
| val (float): Value to fill |
| |
| Example: |
| >>> x = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
| >>> index = torch.LongTensor([0, 2]) |
| >>> x.index_fill_(1, index, -1) |
| >>> x |
| -1 2 -1 |
| -1 5 -1 |
| -1 8 -1 |
| [torch.FloatTensor of size 3x3] |
| """) |
| |
| add_docstr_all('index_select', |
| """ |
| index_select(dim, index) -> Tensor |
| |
| See :func:`torch.index_select` |
| """) |
| |
| add_docstr_all('inverse', |
| """ |
| inverse() -> Tensor |
| |
| See :func:`torch.inverse` |
| """) |
| |
| add_docstr_all('is_contiguous', |
| """ |
| is_contiguous() -> bool |
| |
| Returns True if this tensor is contiguous in memory in C order. |
| """) |
| |
| add_docstr_all('is_set_to', |
| """ |
| is_set_to(tensor) -> bool |
| |
| Returns True if this object refers to the same ``THTensor`` object from the |
| Torch C API as the given tensor. |
| """) |
| |
| add_docstr_all('kthvalue', |
| """ |
| kthvalue(k, dim=None, keepdim=False) -> (Tensor, LongTensor) |
| |
| See :func:`torch.kthvalue` |
| """) |
| |
| add_docstr_all('le', |
| """ |
| le(other) -> Tensor |
| |
| See :func:`torch.le` |
| """) |
| |
| add_docstr_all('le_', |
| """ |
| le_(other) -> Tensor |
| |
| In-place version of :meth:`~Tensor.le` |
| """) |
| |
| add_docstr_all('lerp', |
| """ |
| lerp(start, end, weight) |
| |
| See :func:`torch.lerp` |
| """) |
| |
| add_docstr_all('lerp_', |
| """ |
| lerp_(start, end, weight) |
| |
| In-place version of :meth:`~Tensor.lerp` |
| """) |
| |
| add_docstr_all('log', |
| """ |
| log() -> Tensor |
| |
| See :func:`torch.log` |
| """) |
| |
| add_docstr_all('log1p', |
| """ |
| log1p() -> Tensor |
| |
| See :func:`torch.log1p` |
| """) |
| |
| add_docstr_all('log1p_', |
| """ |
| log1p_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.log1p` |
| """) |
| |
| add_docstr_all('log_', """ |
| log_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.log` |
| """) |
| |
| add_docstr_all('log_normal_', u""" |
| log_normal_(mean=1, std=2, *, generator=None) |
| |
| Fills this tensor with numbers samples from the log-normal distribution |
| parameterized by the given mean (\u00B5) and standard deviation (\u03C3). |
| Note that :attr:`mean` and :attr:`stdv` are the mean and standard deviation of |
| the underlying normal distribution, and not of the returned distribution: |
| |
| .. math:: |
| |
| P(x) = \\dfrac{1}{x \\sigma \\sqrt{2\\pi}} e^{-\\dfrac{(\\ln x - \\mu)^2}{2\\sigma^2}} |
| """) |
| |
| add_docstr_all('lt', |
| """ |
| lt(other) -> Tensor |
| |
| See :func:`torch.lt` |
| """) |
| |
| add_docstr_all('lt_', |
| """ |
| lt_(other) -> Tensor |
| |
| In-place version of :meth:`~Tensor.lt` |
| """) |
| |
| add_docstr_all('map_', |
| """ |
| map_(tensor, callable) |
| |
| Applies :attr:`callable` for each element in this tensor and the given tensor |
| and stores the results in this tensor. This tensor and the given tensor must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| The :attr:`callable` should have the signature:: |
| |
| def callable(a, b) -> number |
| """) |
| |
| add_docstr_all('masked_scatter_', |
| """ |
| masked_scatter_(mask, source) |
| |
| Copies elements from :attr:`source` into this tensor at positions where the |
| :attr:`mask` is one. |
| The shape of :attr:`mask` must be :ref:`broadcastable <broadcasting-semantics>` |
| with the shape of the underlying tensor. The :attr:`source` should have at least |
| as many elements as the number of ones in :attr:`mask` |
| |
| Args: |
| mask (ByteTensor): The binary mask |
| source (Tensor): The tensor to copy from |
| |
| .. note:: |
| |
| The :attr:`mask` operates on the :attr:`self` tensor, not on the given |
| :attr:`source` tensor. |
| """) |
| |
| add_docstr_all('masked_fill_', |
| """ |
| masked_fill_(mask, value) |
| |
| Fills elements of this tensor with :attr:`value` where :attr:`mask` is one. |
| The shape of :attr:`mask` must be :ref:`broadcastable <broadcasting-semantics>` |
| with the shape of the underlying tensor. |
| |
| Args: |
| mask (ByteTensor): The binary mask |
| value (float): The value to fill |
| """) |
| |
| add_docstr_all('masked_select', |
| """ |
| masked_select(mask) -> Tensor |
| |
| See :func:`torch.masked_select` |
| """) |
| |
| add_docstr_all('max', |
| """ |
| max(dim=None, keepdim=False) -> float or (Tensor, Tensor) |
| |
| See :func:`torch.max` |
| """) |
| |
| add_docstr_all('mean', |
| """ |
| mean(dim=None, keepdim=False) -> float or (Tensor, Tensor) |
| |
| See :func:`torch.mean` |
| """) |
| |
| add_docstr_all('median', |
| """ |
| median(dim=None, keepdim=False) -> (Tensor, LongTensor) |
| |
| See :func:`torch.median` |
| """) |
| |
| add_docstr_all('min', |
| """ |
| min(dim=None, keepdim=False) -> float or (Tensor, Tensor) |
| |
| See :func:`torch.min` |
| """) |
| |
| add_docstr_all('mm', |
| """ |
| mm(mat2) -> Tensor |
| |
| See :func:`torch.mm` |
| """) |
| |
| add_docstr_all('mode', |
| """ |
| mode(dim=None, keepdim=False) -> (Tensor, LongTensor) |
| |
| See :func:`torch.mode` |
| """) |
| |
| add_docstr_all('mul', |
| """ |
| mul(value) -> Tensor |
| |
| See :func:`torch.mul` |
| """) |
| |
| add_docstr_all('mul_', |
| """ |
| mul_(value) |
| |
| In-place version of :meth:`~Tensor.mul` |
| """) |
| |
| add_docstr_all('multinomial', |
| """ |
| multinomial(num_samples, replacement=False, *, generator=None) |
| |
| See :func:`torch.multinomial` |
| """) |
| |
| add_docstr_all('mv', |
| """ |
| mv(vec) -> Tensor |
| |
| See :func:`torch.mv` |
| """) |
| |
| add_docstr_all('narrow', |
| """ |
| narrow(dimension, start, length) -> Tensor |
| |
| Returns a new tensor that is a narrowed version of this tensor. The dimension |
| :attr:`dim` is narrowed from :attr:`start` to :attr:`start + length`. The |
| returned tensor and this tensor share the same underlying storage. |
| |
| Args: |
| dimension (int): The dimension along which to narrow |
| start (int): The starting dimension |
| length (int): |
| |
| Example: |
| >>> x = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
| >>> x.narrow(0, 0, 2) |
| 1 2 3 |
| 4 5 6 |
| [torch.FloatTensor of size 2x3] |
| >>> x.narrow(1, 1, 2) |
| 2 3 |
| 5 6 |
| 8 9 |
| [torch.FloatTensor of size 3x2] |
| """) |
| |
| add_docstr_all('ndimension', |
| """ |
| ndimension() -> int |
| |
| Alias for :meth:`~Tensor.dim()` |
| """) |
| |
| add_docstr_all('ne', |
| """ |
| ne(other) -> Tensor |
| |
| See :func:`torch.ne` |
| """) |
| |
| add_docstr_all('ne_', |
| """ |
| ne_(other) -> Tensor |
| |
| In-place version of :meth:`~Tensor.ne` |
| """) |
| |
| add_docstr_all('neg', |
| """ |
| neg() -> Tensor |
| |
| See :func:`torch.neg` |
| """) |
| |
| add_docstr_all('neg_', |
| """ |
| neg_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.neg` |
| """) |
| |
| add_docstr_all('nelement', |
| """ |
| nelement() -> int |
| |
| Alias for :meth:`~Tensor.numel` |
| """) |
| |
| add_docstr_all('nonzero', |
| """ |
| nonzero() -> LongTensor |
| |
| See :func:`torch.nonzero` |
| """) |
| |
| add_docstr_all('norm', |
| """ |
| norm(p=2, dim=None, keepdim=False) -> float |
| |
| See :func:`torch.norm` |
| """) |
| |
| add_docstr_all('normal_', |
| """ |
| normal_(mean=0, std=1, *, generator=None) |
| |
| Fills this tensor with elements samples from the normal distribution |
| parameterized by :attr:`mean` and :attr:`std`. |
| """) |
| |
| add_docstr_all('numel', |
| """ |
| numel() -> int |
| |
| See :func:`torch.numel` |
| """) |
| |
| add_docstr_all('numpy', |
| """ |
| numpy() -> ndarray |
| |
| Returns this tensor as a NumPy :class:`ndarray`. This tensor and the returned |
| :class:`ndarray` share the same underlying storage. Changes to this tensor will |
| be reflected in the :class:`ndarray` and vice versa. |
| """) |
| |
| add_docstr_all('orgqr', |
| """ |
| orgqr(input2) -> Tensor |
| |
| See :func:`torch.orgqr` |
| """) |
| |
| add_docstr_all('ormqr', |
| """ |
| ormqr(input2, input3, left=True, transpose=False) -> Tensor |
| |
| See :func:`torch.ormqr` |
| """) |
| |
| add_docstr_all('potrf', |
| """ |
| potrf(upper=True) -> Tensor |
| |
| See :func:`torch.potrf` |
| """) |
| |
| add_docstr_all('potri', |
| """ |
| potri(upper=True) -> Tensor |
| |
| See :func:`torch.potri` |
| """) |
| |
| add_docstr_all('potrs', |
| """ |
| potrs(input2, upper=True) -> Tensor |
| |
| See :func:`torch.potrs` |
| """) |
| |
| add_docstr_all('pow', |
| """ |
| pow(exponent) |
| |
| See :func:`torch.pow` |
| """) |
| |
| add_docstr_all('pow_', |
| """ |
| pow_(exponent) |
| |
| In-place version of :meth:`~Tensor.pow` |
| """) |
| |
| add_docstr_all('prod', |
| """ |
| prod(dim=None, keepdim=False) -> float |
| |
| See :func:`torch.prod` |
| """) |
| |
| add_docstr_all('pstrf', |
| """ |
| pstrf(upper=True, tol=-1) -> (Tensor, IntTensor) |
| |
| See :func:`torch.pstrf` |
| """) |
| |
| add_docstr_all('put_', |
| """ |
| put_(indices, tensor, accumulate=False) -> Tensor |
| |
| Copies the elements from :attr:`tensor` into the positions specified by |
| indices. For the puropose of indexing, the ``self`` tensor is treated as if it |
| were a 1D tensor. |
| |
| If :attr:`accumulate` is ``True``, the elements in :attr:`tensor` are added to |
| :attr:`self`. If accumulate is ``False``, the behavior is undefined if indices |
| contains duplicate elements. |
| |
| Args: |
| indices (LongTensor): the indices into self |
| tensor (Tensor): Tensor containing values to copy |
| accumulate (bool): True to accumulate into self |
| |
| Example:: |
| |
| >>> src = torch.Tensor([[4, 3, 5], |
| ... [6, 7, 8]]) |
| >>> src.put_(torch.LongTensor([1, 3]), torch.Tensor([9, 10])) |
| 4 9 5 |
| 10 7 8 |
| [torch.FloatTensor of size 2x3] |
| """) |
| |
| add_docstr_all('qr', |
| """ |
| qr() -> (Tensor, Tensor) |
| |
| See :func:`torch.qr` |
| """) |
| |
| add_docstr_all('random_', |
| """ |
| random_(from=0, to=None, *, generator=None) |
| |
| Fills this tensor with numbers sampled from the discrete uniform distribution |
| over [from, to - 1]. If not specified, the values are usually only bounded by |
| this tensor's data type. However, for floating point types, if unspecified, |
| range will be [0, 2^mantissa] to ensure that every value is representable. |
| For example, `torch.DoubleTensor(1).random_()` will be uniform in [0, 2^53]. |
| """) |
| |
| add_docstr_all('reciprocal', |
| """ |
| reciprocal() -> Tensor |
| |
| See :func:`torch.reciprocal` |
| """) |
| |
| add_docstr_all('reciprocal_', |
| """ |
| reciprocal_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.reciprocal` |
| """) |
| |
| add_docstr_all('remainder', |
| """ |
| remainder(divisor) -> Tensor |
| |
| See :func:`torch.remainder` |
| """) |
| |
| add_docstr_all('remainder_', |
| """ |
| remainder_(divisor) -> Tensor |
| |
| In-place version of :meth:`~Tensor.remainder` |
| """) |
| |
| add_docstr_all('renorm', |
| """ |
| renorm(p, dim, maxnorm) -> Tensor |
| |
| See :func:`torch.renorm` |
| """) |
| |
| add_docstr_all('renorm_', |
| """ |
| renorm_(p, dim, maxnorm) -> Tensor |
| |
| In-place version of :meth:`~Tensor.renorm` |
| """) |
| |
| add_docstr_all('resize_', |
| """ |
| resize_(*sizes) |
| |
| Resizes this tensor to the specified size. If the number of elements is |
| larger than the current storage size, then the underlying storage is resized |
| to fit the new number of elements. If the number of elements is smaller, the |
| underlying storage is not changed. Existing elements are preserved but any new |
| memory is uninitialized. |
| |
| Args: |
| sizes (torch.Size or int...): The desired size |
| |
| Example: |
| >>> x = torch.Tensor([[1, 2], [3, 4], [5, 6]]) |
| >>> x.resize_(2, 2) |
| >>> x |
| 1 2 |
| 3 4 |
| [torch.FloatTensor of size 2x2] |
| """) |
| |
| add_docstr_all('resize_as_', |
| """ |
| resize_as_(tensor) |
| |
| Resizes the current tensor to be the same size as the specified tensor. This is |
| equivalent to:: |
| |
| self.resize_(tensor.size()) |
| """) |
| |
| add_docstr_all('round', |
| """ |
| round() -> Tensor |
| |
| See :func:`torch.round` |
| """) |
| |
| add_docstr_all('round_', |
| """ |
| round_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.round` |
| """) |
| |
| add_docstr_all('rsqrt', |
| """ |
| rsqrt() -> Tensor |
| |
| See :func:`torch.rsqrt` |
| """) |
| |
| add_docstr_all('rsqrt_', |
| """ |
| rsqrt_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.rsqrt` |
| """) |
| |
| add_docstr_all('scatter_', |
| """ |
| scatter_(dim, index, src) -> Tensor |
| |
| Writes all values from the Tensor :attr:`src` into self at the indices specified |
| in the :attr:`index` Tensor. The indices are specified with respect to the |
| given dimension, dim, in the manner described in :meth:`~Tensor.gather`. |
| |
| Note that, as for gather, the values of index must be between `0` and |
| `(self.size(dim) -1)` inclusive and all values in a row along the specified |
| dimension must be unique. |
| |
| Args: |
| input (Tensor): The source tensor |
| dim (int): The axis along which to index |
| index (LongTensor): The indices of elements to scatter |
| src (Tensor or float): The source element(s) to scatter |
| |
| Example:: |
| |
| >>> x = torch.rand(2, 5) |
| >>> x |
| |
| 0.4319 0.6500 0.4080 0.8760 0.2355 |
| 0.2609 0.4711 0.8486 0.8573 0.1029 |
| [torch.FloatTensor of size 2x5] |
| |
| >>> torch.zeros(3, 5).scatter_(0, torch.LongTensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]]), x) |
| |
| 0.4319 0.4711 0.8486 0.8760 0.2355 |
| 0.0000 0.6500 0.0000 0.8573 0.0000 |
| 0.2609 0.0000 0.4080 0.0000 0.1029 |
| [torch.FloatTensor of size 3x5] |
| |
| >>> z = torch.zeros(2, 4).scatter_(1, torch.LongTensor([[2], [3]]), 1.23) |
| >>> z |
| |
| 0.0000 0.0000 1.2300 0.0000 |
| 0.0000 0.0000 0.0000 1.2300 |
| [torch.FloatTensor of size 2x4] |
| |
| """) |
| |
| add_docstr_all('select', |
| """ |
| select(dim, index) -> Tensor or number |
| |
| Slices the tensor along the selected dimension at the given index. If this |
| tensor is one dimensional, this function returns a number. Otherwise, it |
| returns a tensor with the given dimension removed. |
| |
| Args: |
| dim (int): Dimension to slice |
| index (int): Index to select |
| |
| .. note:: |
| |
| :meth:`select` is equivalent to slicing. For example, |
| ``tensor.select(0, index)`` is equivalent to ``tensor[index]`` and |
| ``tensor.select(2, index)`` is equivalent to ``tensor[:,:,index]``. |
| """) |
| |
| add_docstr_all('set_', |
| """ |
| set_(source=None, storage_offset=0, size=None, stride=None) |
| |
| Sets the underlying storage, size, and strides. If :attr:`source` is a tensor, |
| this tensor will share the same storage and have the same size and strides |
| as the given tensor. Changes to elements in one tensor will be reflected in the |
| other. |
| |
| If :attr:`source` is a :class:`~torch.Storage`, the method sets the underlying |
| storage, offset, size, and stride. |
| |
| Args: |
| source (Tensor or Storage): The tensor or storage to use |
| storage_offset (int): The offset in the storage |
| size (torch.Size): The desired size. Defaults to the size of the source. |
| stride (tuple): The desired stride. Defaults to C-contiguous strides. |
| """) |
| |
| add_docstr_all('sigmoid', |
| """ |
| sigmoid() -> Tensor |
| |
| See :func:`torch.sigmoid` |
| """) |
| |
| add_docstr_all('sigmoid_', |
| """ |
| sigmoid_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.sigmoid` |
| """) |
| |
| add_docstr_all('sign', |
| """ |
| sign() -> Tensor |
| |
| See :func:`torch.sign` |
| """) |
| |
| add_docstr_all('sign_', |
| """ |
| sign_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.sign` |
| """) |
| |
| add_docstr_all('sin', |
| """ |
| sin() -> Tensor |
| |
| See :func:`torch.sin` |
| """) |
| |
| add_docstr_all('sin_', |
| """ |
| sin_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.sin` |
| """) |
| |
| add_docstr_all('sinh', |
| """ |
| sinh() -> Tensor |
| |
| See :func:`torch.sinh` |
| """) |
| |
| add_docstr_all('sinh_', |
| """ |
| sinh_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.sinh` |
| """) |
| |
| add_docstr_all('size', |
| """ |
| size() -> torch.Size |
| |
| Returns the size of the tensor. The returned value is a subclass of |
| :class:`tuple`. |
| |
| Example: |
| >>> torch.Tensor(3, 4, 5).size() |
| torch.Size([3, 4, 5]) |
| """) |
| |
| add_docstr_all('sort', |
| """ |
| sort(dim=None, descending=False) -> (Tensor, LongTensor) |
| |
| See :func:`torch.sort` |
| """) |
| |
| add_docstr_all('sqrt', |
| """ |
| sqrt() -> Tensor |
| |
| See :func:`torch.sqrt` |
| """) |
| |
| add_docstr_all('sqrt_', |
| """ |
| sqrt_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.sqrt` |
| """) |
| |
| add_docstr_all('squeeze', |
| """ |
| squeeze(dim=None) |
| |
| See :func:`torch.squeeze` |
| """) |
| |
| add_docstr_all('squeeze_', |
| """ |
| squeeze_(dim=None) |
| |
| In-place version of :meth:`~Tensor.squeeze` |
| """) |
| |
| add_docstr_all('std', |
| """ |
| std(dim=None, unbiased=True, keepdim=False) -> float |
| |
| See :func:`torch.std` |
| """) |
| |
| add_docstr_all('storage', |
| """ |
| storage() -> torch.Storage |
| |
| Returns the underlying storage |
| """) |
| |
| add_docstr_all('storage_offset', |
| """ |
| storage_offset() -> int |
| |
| Returns this tensor's offset in the underlying storage in terms of number of |
| storage elements (not bytes). |
| |
| Example: |
| >>> x = torch.Tensor([1, 2, 3, 4, 5]) |
| >>> x.storage_offset() |
| 0 |
| >>> x[3:].storage_offset() |
| 3 |
| """) |
| |
| add_docstr_all('stride', |
| """ |
| stride(dim) -> tuple or int |
| |
| Returns the stride of the tensor. |
| Stride is the jump necessary to go from one element to the next one in the specified dimension dim. |
| Tuple is returned when no Argument is passed. So we get stride in all dimensions. |
| Integer value is returned when we desire stride in particular dimension. |
| |
| Args: |
| dim (int): The desired dimension in which stride is required. |
| |
| Example: |
| >>> x = torch.Tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]) |
| >>> x.stride() |
| (5, 1) |
| >>>x.stride(0) |
| 5 |
| >>> x.stride(-1) |
| 1 |
| """) |
| |
| add_docstr_all('sub', |
| """ |
| sub(value, other) -> Tensor |
| |
| Subtracts a scalar or tensor from this tensor. If both :attr:`value` and |
| :attr:`other` are specified, each element of :attr:`other` is scaled by |
| :attr:`value` before being used. |
| |
| When :attr:`other` is a tensor, the shape of :attr:`other` must be |
| :ref:`broadcastable <broadcasting-semantics>` with the shape of the underlying |
| tensor. |
| |
| """) |
| |
| add_docstr_all('sub_', |
| """ |
| sub_(x) -> Tensor |
| |
| In-place version of :meth:`~Tensor.sub` |
| """) |
| |
| add_docstr_all('sum', |
| """ |
| sum(dim=None, keepdim=False) -> float |
| |
| See :func:`torch.sum` |
| """) |
| |
| add_docstr_all('svd', |
| """ |
| svd(some=True) -> (Tensor, Tensor, Tensor) |
| |
| See :func:`torch.svd` |
| """) |
| |
| add_docstr_all('symeig', |
| """ |
| symeig(eigenvectors=False, upper=True) -> (Tensor, Tensor) |
| |
| See :func:`torch.symeig` |
| """) |
| |
| add_docstr_all('t', |
| """ |
| t() -> Tensor |
| |
| See :func:`torch.t` |
| """) |
| |
| add_docstr_all('t_', |
| """ |
| t_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.t` |
| """) |
| |
| add_docstr_all('take', |
| """ |
| take(indices) -> Tensor |
| |
| See :func:`torch.take` |
| """) |
| |
| add_docstr_all('tan_', |
| """ |
| tan_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.tan` |
| """) |
| |
| add_docstr_all('tanh', |
| """ |
| tanh() -> Tensor |
| |
| See :func:`torch.tanh` |
| """) |
| |
| add_docstr_all('tanh_', |
| """ |
| tanh_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.tanh` |
| """) |
| |
| add_docstr_all('topk', |
| """ |
| topk(k, dim=None, largest=True, sorted=True) -> (Tensor, LongTensor) |
| |
| See :func:`torch.topk` |
| """) |
| |
| add_docstr_all('trace', |
| """ |
| trace() -> float |
| |
| See :func:`torch.trace` |
| """) |
| |
| add_docstr_all('transpose', |
| """ |
| transpose(dim0, dim1) -> Tensor |
| |
| See :func:`torch.transpose` |
| """) |
| |
| add_docstr_all('transpose_', |
| """ |
| transpose_(dim0, dim1) -> Tensor |
| |
| In-place version of :meth:`~Tensor.transpose` |
| """) |
| |
| add_docstr_all('tril', |
| """ |
| tril(k=0) -> Tensor |
| |
| See :func:`torch.tril` |
| """) |
| |
| add_docstr_all('tril_', |
| """ |
| tril_(k=0) -> Tensor |
| |
| In-place version of :meth:`~Tensor.tril` |
| """) |
| |
| add_docstr_all('triu', |
| """ |
| triu(k=0) -> Tensor |
| |
| See :func:`torch.triu` |
| """) |
| |
| add_docstr_all('triu_', |
| """ |
| triu_(k=0) -> Tensor |
| |
| In-place version of :meth:`~Tensor.triu` |
| """) |
| |
| add_docstr_all('trtrs', |
| """ |
| trtrs(A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor) |
| |
| See :func:`torch.trtrs` |
| """) |
| |
| add_docstr_all('trunc', |
| """ |
| trunc() -> Tensor |
| |
| See :func:`torch.trunc` |
| """) |
| |
| add_docstr_all('trunc_', |
| """ |
| trunc_() -> Tensor |
| |
| In-place version of :meth:`~Tensor.trunc` |
| """) |
| |
| add_docstr_all('unfold', |
| """ |
| unfold(dim, size, step) -> Tensor |
| |
| Returns a tensor which contains all slices of size :attr:`size` in |
| the dimension :attr:`dim`. |
| |
| Step between two slices is given by :attr:`step`. |
| |
| If `sizedim` is the original size of dimension dim, the size of dimension `dim` |
| in the returned tensor will be `(sizedim - size) / step + 1` |
| |
| An additional dimension of size size is appended in the returned tensor. |
| |
| Args: |
| dim (int): dimension in which unfolding happens |
| size (int): size of each slice that is unfolded |
| step (int): the step between each slice |
| |
| Example:: |
| |
| >>> x = torch.arange(1, 8) |
| >>> x |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| [torch.FloatTensor of size 7] |
| |
| >>> x.unfold(0, 2, 1) |
| |
| 1 2 |
| 2 3 |
| 3 4 |
| 4 5 |
| 5 6 |
| 6 7 |
| [torch.FloatTensor of size 6x2] |
| |
| >>> x.unfold(0, 2, 2) |
| |
| 1 2 |
| 3 4 |
| 5 6 |
| [torch.FloatTensor of size 3x2] |
| |
| """) |
| |
| add_docstr_all('uniform_', |
| """ |
| uniform_(from=0, to=1) -> Tensor |
| |
| Fills this tensor with numbers sampled from the uniform distribution: |
| |
| .. math: |
| |
| P(x) = \dfrac{1}{to - from} |
| """) |
| |
| add_docstr_all('unsqueeze', |
| """ |
| unsqueeze(dim) |
| |
| See :func:`torch.unsqueeze` |
| """) |
| |
| add_docstr_all('unsqueeze_', |
| """ |
| unsqueeze_(dim) |
| |
| In-place version of :meth:`~Tensor.unsqueeze` |
| """) |
| |
| add_docstr_all('var', |
| """ |
| var(dim=None, unbiased=True, keepdim=False) -> float |
| |
| See :func:`torch.var` |
| """) |
| |
| add_docstr_all('view', |
| """ |
| view(*args) -> Tensor |
| |
| Returns a new tensor with the same data but different size. |
| |
| The returned tensor shares the same data and must have the same number |
| of elements, but may have a different size. A tensor must be |
| :func:`contiguous` to be viewed. |
| |
| Args: |
| args (torch.Size or int...): Desired size |
| |
| Example: |
| >>> x = torch.randn(4, 4) |
| >>> x.size() |
| torch.Size([4, 4]) |
| >>> y = x.view(16) |
| >>> y.size() |
| torch.Size([16]) |
| >>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions |
| >>> z.size() |
| torch.Size([2, 8]) |
| """) |
| |
| add_docstr_all('expand', |
| """ |
| expand(*sizes) -> Tensor |
| |
| Returns a new view of the tensor with singleton dimensions expanded |
| to a larger size. |
| |
| Passing -1 as the size for a dimension means not changing the size of |
| that dimension. |
| |
| Tensor can be also expanded to a larger number of dimensions, and the |
| new ones will be appended at the front. (For the new dimensions, the |
| size cannot be set to -1.) |
| |
| Expanding a tensor does not allocate new memory, but only creates a |
| new view on the existing tensor where a dimension of size one is |
| expanded to a larger size by setting the ``stride`` to 0. Any dimension |
| of size 1 can be expanded to an arbitrary value without allocating new |
| memory. |
| |
| Args: |
| *sizes (torch.Size or int...): The desired expanded size |
| |
| Example: |
| >>> x = torch.Tensor([[1], [2], [3]]) |
| >>> x.size() |
| torch.Size([3, 1]) |
| >>> x.expand(3, 4) |
| 1 1 1 1 |
| 2 2 2 2 |
| 3 3 3 3 |
| [torch.FloatTensor of size 3x4] |
| >>> x.expand(-1, 4) # -1 means not changing the size of that dimension |
| 1 1 1 1 |
| 2 2 2 2 |
| 3 3 3 3 |
| [torch.FloatTensor of size 3x4] |
| """) |
| |
| add_docstr_all('zero_', |
| """ |
| zero_() |
| |
| Fills this tensor with zeros. |
| """) |