blob: a3edfabae9fef53423db8cec1db004b4643bfc61 [file] [log] [blame]
#include <c10/cuda/CUDAStream.h>
#include <c10/cuda/CUDAFunctions.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <array>
#include <atomic>
#include <cstdint>
#include <mutex>
#include <vector>
namespace c10 {
namespace cuda {
namespace {
// Internal implementation that leaks the stream. It's not intended to be used
// outside of this file.
struct LeakyStreamInternals {
LeakyStreamInternals() = default;
C10_DISABLE_COPY_AND_ASSIGN(LeakyStreamInternals);
~LeakyStreamInternals() {
// NB: this code is invoked only in the destruction of global variables
// (since we never shrink the corresponding vectors). At this point the CUDA
// runtime might be already destroyed and invoking cudaStreamDestroy leads
// to a crash. It's likely an issue in CUDA, but to be safe - let's just
// "forget" the destruction.
// if (stream) cudaStreamDestroy(stream);
}
DeviceIndex device_index = -1;
int32_t stream_id = -1;
cudaStream_t stream = nullptr;
};
// Global stream state and constants
static DeviceIndex num_gpus = -1;
static constexpr int kStreamsPerPoolBits = 5;
static constexpr int kStreamsPerPool = 1 << kStreamsPerPoolBits;
static constexpr unsigned int kDefaultFlags = cudaStreamNonBlocking;
// Note: lower numbers are higher priorities, zero is default priority
static int kHighPriority = -1;
static int kLowPriority = 0;
// Default streams
static std::once_flag init_flag;
static LeakyStreamInternals default_streams[C10_COMPILE_TIME_MAX_GPUS];
// Non-default streams
// Note: the number of CUDA devices is determined at run time,
// and the low and high priority pools are lazily initialized
// when the first stream is requested for a device.
// The device flags track the initialization of each device, while
// the low and high priority counters track, for each device, the next stream
// in the pool to be returned when a stream is requested (round-robin fashion
// , see the note in CUDAStream.h).
//
// unique_ptr<T[]> is used instead of vector<T> because T might be non-movable
// and non-copyable.
static std::once_flag device_flags[C10_COMPILE_TIME_MAX_GPUS];
static std::atomic<uint32_t> low_priority_counters[C10_COMPILE_TIME_MAX_GPUS];
static std::atomic<uint32_t> high_priority_counters[C10_COMPILE_TIME_MAX_GPUS];
static std::array<LeakyStreamInternals, kStreamsPerPool>
low_priority_streams[C10_COMPILE_TIME_MAX_GPUS];
static std::array<LeakyStreamInternals, kStreamsPerPool>
high_priority_streams[C10_COMPILE_TIME_MAX_GPUS];
// Note [StreamId assignment]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// How do we assign stream IDs?
//
// -- 25 bits -- -- 2 bits -- -- 5 bits -----
// zeros StreamIdType stream id index
//
// Where StreamIdType:
// 00 = default stream
// 01 = low priority stream
// 10 = high priority stream
//
// This is not really for efficiency; it's just easier to write the code
// to extract the index if we do this with bitmasks :)
//
// We are obligated to treat the stream ID 0 as the default stream, per the
// invariant specified in c10::Stream. However, all other numbers are entirely
// an internal implementation detail, we reserve the right to renumber streams
// however we like.
//
// Note that it is really important that the MSB is zero; StreamId is a
// *signed* integer, and unsigned to signed conversion outside of the
// bounds of signed integer representation is undefined behavior. You
// could work around this with something like
// https://stackoverflow.com/questions/13150449/efficient-unsigned-to-signed-cast-avoiding-implementation-defined-behavior
// but it seems a bit overkill for this.
enum class StreamIdType : uint8_t {
DEFAULT = 0x0,
LOW = 0x1,
HIGH = 0x2,
};
std::ostream& operator<<(std::ostream& stream, StreamIdType s) {
switch (s) {
case StreamIdType::DEFAULT:
stream << "DEFAULT";
break;
case StreamIdType::LOW:
stream << "LOW";
break;
case StreamIdType::HIGH:
stream << "HIGH";
break;
default:
stream << static_cast<uint8_t>(s);
break;
}
return stream;
}
// StreamId is 32-bit, so we can just rely on regular promotion rules.
// We rely on streamIdIndex and streamIdType being non-negative;
// see Note [Hazard when concatenating signed integers]
static inline StreamIdType streamIdType(StreamId s) {
return static_cast<StreamIdType>(s >> kStreamsPerPoolBits);
}
static inline size_t streamIdIndex(StreamId s) {
return static_cast<size_t>(s & ((1 << kStreamsPerPoolBits) - 1));
}
StreamId makeStreamId(StreamIdType st, size_t si) {
return (static_cast<StreamId>(st) << kStreamsPerPoolBits) |
static_cast<StreamId>(si);
}
template <typename T, typename A>
static bool pointer_within(const T* ptr, const A& arr) {
return std::greater_equal<const T*>()(ptr, arr.data()) &&
std::less<const T*>()(ptr, arr.data() + arr.size());
}
static StreamId CUDAStream_getStreamId(const LeakyStreamInternals* ptr) {
// Hypothetically, we could store the stream ID in the stream. But that
// introduces a degree of freedom which could lead to bugs (where we
// misnumber streams in the pool, or overwrite the number). Better
// to just compute it based on the metric that actually matters,
// which is how we map IDs back into the vectors.
DeviceIndex device_index = ptr->device_index;
// Check if it's the default stream
if (ptr == &default_streams[device_index]) {
return makeStreamId(StreamIdType::DEFAULT, 0);
}
// Check if it's a low priority stream
// NB: Because ptr may not necessarily lie within the array, we must use
// std::less and similar templates to avoid UB that arises when
// doing an operator< comparison.
if (pointer_within<LeakyStreamInternals>(
ptr, low_priority_streams[device_index])) {
return makeStreamId(
StreamIdType::LOW, ptr - low_priority_streams[device_index].data());
}
// Check if it's a high priority stream
if (pointer_within<LeakyStreamInternals>(
ptr, high_priority_streams[device_index])) {
return makeStreamId(
StreamIdType::HIGH, ptr - high_priority_streams[device_index].data());
}
TORCH_INTERNAL_ASSERT(
0,
"Could not compute stream ID for ",
ptr,
" on device ",
device_index,
" (something has gone horribly wrong!)");
}
// Thread-local current streams
static thread_local LeakyStreamInternals** current_streams = nullptr;
// Populates global values and creates a default stream for each device.
// Note: the default stream on each device is signified by a nullptr,
// and so is not created as usual.
// In particular, we don't need to switch devices when creating the
// streams.
// Warning: this function must only be called once!
static void initGlobalStreamState() {
num_gpus = device_count();
// Check if the number of GPUs matches the expected compile-time max number
// of GPUs.
TORCH_CHECK(
num_gpus <= C10_COMPILE_TIME_MAX_GPUS,
"Number of CUDA devices on the machine is larger than the compiled "
"max number of gpus expected (",
C10_COMPILE_TIME_MAX_GPUS,
"). Increase that and recompile.");
// Initializes default streams
for (const auto i: c10::irange(num_gpus)) {
default_streams[i].device_index = i;
low_priority_counters[i] = 0;
high_priority_counters[i] = 0;
}
}
// Creates the low and high priority stream pools for the specified device
// Warning: only call once per device!
static void initDeviceStreamState(DeviceIndex device_index) {
// Switches to the requested device so streams are properly associated
// with it.
CUDAGuard device_guard{device_index};
for (const auto i: c10::irange(kStreamsPerPool)) {
auto& lowpri_stream = low_priority_streams[device_index][i];
auto& hipri_stream = high_priority_streams[device_index][i];
lowpri_stream.device_index = device_index;
hipri_stream.device_index = device_index;
C10_CUDA_CHECK(cudaStreamCreateWithPriority(
&lowpri_stream.stream, kDefaultFlags, kLowPriority));
C10_CUDA_CHECK(cudaStreamCreateWithPriority(
&hipri_stream.stream, kDefaultFlags, kHighPriority));
}
}
// Init front-end to ensure initialization only occurs once
static void initCUDAStreamsOnce() {
// Inits default streams (once, globally)
std::call_once(init_flag, initGlobalStreamState);
if (current_streams) {
return;
}
// Inits current streams (thread local) to default streams
current_streams =
(LeakyStreamInternals**)malloc(num_gpus * sizeof(LeakyStreamInternals*));
for (const auto i: c10::irange(num_gpus)) {
current_streams[i] = &default_streams[i];
}
}
// Helper to verify the GPU index is valid
static inline void check_gpu(DeviceIndex device_index) {
AT_ASSERT(device_index >= 0 && device_index < num_gpus);
}
// Helper to determine the index of the stream to return
// Note: Streams are returned round-robin (see note in CUDAStream.h)
static uint32_t get_idx(std::atomic<uint32_t>& counter) {
auto raw_idx = counter++;
return raw_idx % kStreamsPerPool;
}
// See Note [StreamId assignment]
LeakyStreamInternals* CUDAStream_internals(CUDAStream s) {
c10::DeviceIndex device_index = s.device_index();
StreamIdType st = streamIdType(s.unwrap().id());
size_t si = streamIdIndex(s.unwrap().id());
switch (st) {
case StreamIdType::DEFAULT:
TORCH_INTERNAL_ASSERT(
si == 0,
"Unrecognized stream ",
s.unwrap(),
" (I think this should be the default stream, but I got a non-zero index ",
si,
").",
" Did you manufacture the StreamId yourself? Don't do that; use the",
" official API like c10::cuda::getStreamFromPool() to get a new stream.");
return &default_streams[device_index];
case StreamIdType::LOW:
return &low_priority_streams[device_index][si];
case StreamIdType::HIGH:
return &high_priority_streams[device_index][si];
default:
TORCH_INTERNAL_ASSERT(
0,
"Unrecognized stream ",
s.unwrap(),
" (I didn't recognize the stream type, ",
st,
")");
}
}
CUDAStream CUDAStream_fromInternals(const LeakyStreamInternals* ptr) {
return CUDAStream(
CUDAStream::UNCHECKED,
Stream(
Stream::UNSAFE,
c10::Device(DeviceType::CUDA, ptr->device_index),
CUDAStream_getStreamId(ptr)));
}
} // anonymous namespace
cudaStream_t CUDAStream::stream() const {
auto ptr = CUDAStream_internals(*this);
AT_ASSERT(ptr);
return ptr->stream;
}
// Returns a stream from the requested pool
// Note: when called the first time on a device, this will create the
// stream pools for that device.
CUDAStream getStreamFromPool(
const bool isHighPriority,
DeviceIndex device_index) {
initCUDAStreamsOnce();
if (device_index == -1)
device_index = current_device();
check_gpu(device_index);
// Initializes the stream pools (once)
std::call_once(
device_flags[device_index], initDeviceStreamState, device_index);
if (isHighPriority) {
const auto idx = get_idx(high_priority_counters[device_index]);
return CUDAStream_fromInternals(&high_priority_streams[device_index][idx]);
}
const auto idx = get_idx(low_priority_counters[device_index]);
return CUDAStream_fromInternals(&low_priority_streams[device_index][idx]);
}
CUDAStream getDefaultCUDAStream(DeviceIndex device_index) {
initCUDAStreamsOnce();
if (device_index == -1) {
device_index = current_device();
}
check_gpu(device_index);
return CUDAStream_fromInternals(&default_streams[device_index]);
}
CUDAStream getCurrentCUDAStream(DeviceIndex device_index) {
initCUDAStreamsOnce();
if (device_index == -1) {
device_index = current_device();
}
check_gpu(device_index);
return CUDAStream_fromInternals(current_streams[device_index]);
}
void setCurrentCUDAStream(CUDAStream stream) {
initCUDAStreamsOnce();
auto ptr = CUDAStream_internals(stream);
AT_ASSERT(ptr);
current_streams[ptr->device_index] = ptr;
}
std::ostream& operator<<(std::ostream& stream, const CUDAStream& s) {
return stream << s.unwrap();
}
} // namespace cuda
} // namespace c10