blob: da6ddd8728ed63d73346c9f7f08caffb4b971d34 [file] [log] [blame]
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/core/Reduction.h>
#include <ATen/Dispatch.h>
#include <ATen/TensorIterator.h>
#include <ATen/TensorMeta.h>
#include <ATen/TensorOperators.h>
#include <ATen/native/BinaryOps.h>
#include <ATen/native/PointwiseOps.h>
#include <ATen/native/cpu/Loops.h>
#include <c10/util/Exception.h>
#include <ATen/TensorSubclassLikeUtils.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/binary_cross_entropy_backward_native.h>
#include <ATen/ops/binary_cross_entropy_native.h>
#include <ATen/ops/binary_cross_entropy_with_logits_native.h>
#include <ATen/ops/clamp_min.h>
#include <ATen/ops/cosine_embedding_loss_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_like.h>
#include <ATen/ops/exp.h>
#include <ATen/ops/hinge_embedding_loss_native.h>
#include <ATen/ops/huber_loss_backward.h>
#include <ATen/ops/huber_loss_backward_native.h>
#include <ATen/ops/huber_loss_native.h>
#include <ATen/ops/kl_div_native.h>
#include <ATen/ops/l1_loss_native.h>
#include <ATen/ops/log.h>
#include <ATen/ops/margin_ranking_loss_native.h>
#include <ATen/ops/mean.h>
#include <ATen/ops/min.h>
#include <ATen/ops/mse_loss_backward.h>
#include <ATen/ops/mse_loss_backward_native.h>
#include <ATen/ops/mse_loss_meta.h>
#include <ATen/ops/mse_loss_native.h>
#include <ATen/ops/mul.h>
#include <ATen/ops/neg.h>
#include <ATen/ops/pairwise_distance.h>
#include <ATen/ops/poisson_nll_loss_native.h>
#include <ATen/ops/smooth_l1_loss_backward.h>
#include <ATen/ops/smooth_l1_loss_backward_native.h>
#include <ATen/ops/smooth_l1_loss_meta.h>
#include <ATen/ops/smooth_l1_loss_native.h>
#include <ATen/ops/soft_margin_loss.h>
#include <ATen/ops/soft_margin_loss_backward.h>
#include <ATen/ops/soft_margin_loss_backward_native.h>
#include <ATen/ops/soft_margin_loss_native.h>
#include <ATen/ops/squeeze.h>
#include <ATen/ops/sum.h>
#include <ATen/ops/triplet_margin_loss_native.h>
#include <ATen/ops/where.h>
#include <ATen/ops/xlogy.h>
#include <ATen/ops/zeros_like.h>
#endif
constexpr float EPSILON = 1e-12;
namespace {
static inline at::Tensor apply_loss_reduction(const at::Tensor& unreduced, int64_t reduction) {
if (reduction == at::Reduction::Mean) {
return unreduced.mean();
} else if (reduction == at::Reduction::Sum) {
return unreduced.sum();
}
return unreduced;
}
}
namespace at {
namespace meta {
TORCH_META_FUNC(smooth_l1_loss)
(const Tensor& input, const Tensor& target, const int64_t reduction, double beta) {
TORCH_CHECK(beta >= 0, "smooth_l1_loss does not support negative values for beta.")
// TODO: Reduce this extra TensorIterator construction for Reduction::Mean & Sum.
// We do another TensorIterator construction in the IMPL for the two cases.
build_borrowing_binary_op(maybe_get_output(), input, target);
if (reduction == Reduction::None) {
return;
}
TORCH_INTERNAL_ASSERT(reduction == Reduction::Mean || reduction == Reduction::Sum);
maybe_get_output().resize_({});
}
TORCH_META_FUNC(mse_loss)
(const Tensor& input, const Tensor& target, const int64_t reduction) {
build_borrowing_binary_op(maybe_get_output(), input, target);
if (reduction == Reduction::None) {
return;
}
TORCH_INTERNAL_ASSERT(reduction == Reduction::Mean || reduction == Reduction::Sum);
maybe_get_output().resize_({});
}
} // namespace meta
namespace native {
DEFINE_DISPATCH(smooth_l1_stub);
DEFINE_DISPATCH(smooth_l1_backward_stub);
DEFINE_DISPATCH(huber_stub);
DEFINE_DISPATCH(huber_backward_stub);
DEFINE_DISPATCH(mse_stub);
DEFINE_DISPATCH(mse_backward_stub);
TORCH_IMPL_FUNC(smooth_l1_loss_out)
(const Tensor& input, const Tensor& target, int64_t reduction, double beta, const Tensor& result) {
if (reduction != Reduction::None) {
Tensor loss;
auto iter = TensorIterator::borrowing_binary_op(loss, input, target);
smooth_l1_stub(iter.device_type(), iter, beta);
if (reduction == Reduction::Mean) {
at::mean_out(const_cast<Tensor&>(result), iter.output(), IntArrayRef{});
} else {
at::sum_out(const_cast<Tensor&>(result), iter.output(), IntArrayRef{});
}
} else {
smooth_l1_stub(device_type(), *this, beta);
}
}
TORCH_IMPL_FUNC(mse_loss_out)
(const Tensor& input, const Tensor& target, int64_t reduction, const Tensor& result) {
if (reduction != Reduction::None) {
Tensor loss;
auto iter = TensorIterator::borrowing_binary_op(loss, input, target);
mse_stub(iter.device_type(), iter);
if (reduction == Reduction::Mean) {
at::mean_out(const_cast<Tensor&>(result), iter.output(), IntArrayRef{});
} else {
at::sum_out(const_cast<Tensor&>(result), iter.output(), IntArrayRef{});
}
} else {
mse_stub(device_type(), *this);
}
}
Tensor cosine_embedding_loss(const Tensor& input1, const Tensor& input2, const Tensor& target, double margin, int64_t reduction) {
auto targ_dim = target.dim();
TORCH_CHECK(
targ_dim == 1 || targ_dim == 0,
"0D or 1D target tensor expected, multi-target not supported");
if (targ_dim == 1) {
TORCH_CHECK(
input1.dim() == 2 && input2.dim() == 2,
"1D target tensor expects 2D input tensors, but found inputs with sizes ",
input1.sizes(),
" and ",
input2.sizes(),
".");
} else {
TORCH_CHECK(
input1.dim() == 1 && input2.dim() == 1,
"0D target tensor expects 1D input tensors, but found inputs with sizes ",
input1.sizes(),
" and ",
input2.sizes(),
".");
}
auto prod_sum = (input1 * input2).sum(targ_dim);
auto mag_square1 = (input1 * input1).sum(targ_dim) + EPSILON;
auto mag_square2 = (input2 * input2).sum(targ_dim) + EPSILON;
auto denom = (mag_square1 * mag_square2).sqrt_();
auto cos = prod_sum / denom;
auto zeros = at::zeros_like(cos, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto pos = 1 - cos;
auto neg = (cos - margin).clamp_min_(0);
auto output_pos = at::where(target == 1, pos, zeros);
auto output_neg = at::where(target == -1, neg, zeros);
auto output = output_pos + output_neg;
return apply_loss_reduction(output, reduction);
}
Tensor hinge_embedding_loss(const Tensor& self, const Tensor& target, double margin, int64_t reduction) {
auto zeros = at::zeros_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto margin_diff = (margin - self);
// For Composite Compliance,
// In Forward AD, if `margin_diff` is a CCT but its tangent isn't,
// using inplace clamp_min doesn't work because we end up writing
// the CCT in-place to the tangent
auto margin_clamp = (margin_diff._fw_grad(/*level*/ 0).defined() &&
isTensorSubclassLike(margin_diff))
? margin_diff.clamp_min(0)
: margin_diff.clamp_min_(0);
auto output_margin = at::where(target != 1, margin_clamp, zeros);
auto output_self = at::where(target != -1, self, zeros);
auto output = output_margin + output_self;
return apply_loss_reduction(output, reduction);
}
Tensor triplet_margin_loss(const Tensor& anchor, const Tensor& positive, const Tensor& negative, double margin,
double p, double eps, bool swap, int64_t reduction) {
auto a_dim = anchor.dim();
auto p_dim = positive.dim();
auto n_dim = negative.dim();
TORCH_CHECK(
a_dim == p_dim && p_dim == n_dim,
"The anchor, positive, and negative tensors are expected to have "
"the same number of dimensions, but got: anchor ", a_dim, "D, "
"positive ", p_dim, "D, and negative ", n_dim, "D inputs")
auto dist_pos = at::pairwise_distance(anchor, positive, p, eps);
auto dist_neg = at::pairwise_distance(anchor, negative, p, eps);
// The distance swap is described in the paper "Learning shallow
// convolutional feature descriptors with triplet losses" by V. Balntas, E.
// Riba et al. If True, and if the positive example is closer to the
// negative example than the anchor is, swaps the positive example and the
// anchor in the loss computation.
if (swap) {
auto dist_swap = at::pairwise_distance(positive, negative, p, eps);
dist_neg = at::min(dist_neg, dist_swap);
}
auto output = at::clamp_min(margin + dist_pos - dist_neg, 0);
return apply_loss_reduction(output, reduction);
}
Tensor margin_ranking_loss(const Tensor& input1, const Tensor& input2, const Tensor& target, double margin, int64_t reduction) {
auto unclamped_output = (-target * (input1 - input2) + margin);
// For Composite Compliance,
// In Forward AD, if `margin_diff` is a CCT but its tangent isn't,
// using inplace clamp_min doesn't work because we end up writing
// the CCT in-place to the tangent
auto output = (unclamped_output._fw_grad(/*level*/ 0).defined() &&
isTensorSubclassLike(unclamped_output))
? unclamped_output.clamp_min(0)
: unclamped_output.clamp_min_(0);
return apply_loss_reduction(output, reduction);
}
Tensor kl_div(const Tensor& input, const Tensor& target, int64_t reduction, bool log_target) {
TORCH_CHECK(!input.is_complex() && !target.is_complex(),
"kl_div: Complex inputs not supported.");
TORCH_CHECK(!at::isIntegralType(input.scalar_type(), /*include_bool*/true) &&
!at::isIntegralType(target.scalar_type(), /*include_bool*/true),
"kl_div: Integral inputs not supported.");
Tensor output;
if (log_target) {
output = at::exp(target) * (target - input);
} else {
output = at::xlogy(target, target) - target * input;
}
return apply_loss_reduction(output, reduction);
}
Tensor binary_cross_entropy_cpu(const Tensor& input, const Tensor& target, const c10::optional<Tensor>& weight_opt, int64_t reduction) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
Tensor loss = at::empty_like(input);
return at::native::binary_cross_entropy_out_cpu(
input, target, weight, reduction, loss);
}
Tensor& binary_cross_entropy_out_cpu(const Tensor& input, const Tensor& target, const c10::optional<Tensor>& weight_opt, int64_t reduction, Tensor& loss) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
Tensor loss_squeezed = at::squeeze(loss);
auto iter = TensorIteratorConfig()
.add_output(loss_squeezed)
.add_owned_input(at::squeeze(input))
.add_owned_input(at::squeeze(target))
.build();
AT_DISPATCH_FLOATING_TYPES(loss.scalar_type(), "binary_cross_entropy", [&] {
at::native::cpu_kernel(
iter,
[] (scalar_t input_val, scalar_t target_val) {
TORCH_CHECK(
(input_val >= 0) && (input_val <= 1),
"all elements of input should be between 0 and 1"
);
TORCH_CHECK(
(target_val >= 0) && (target_val <= 1),
"all elements of target should be between 0 and 1"
);
// Binary cross entropy tensor is defined by the equation:
// L = -w (y ln(x) + (1-y) ln(1-x))
return (target_val - scalar_t(1))
* std::max(scalar_t(std::log1p(-input_val)), scalar_t(-100))
- target_val * std::max(scalar_t(std::log(input_val)), scalar_t(-100));
}
);
});
if (weight.defined()) {
loss.mul_(weight);
}
if (reduction != at::Reduction::None) {
Tensor loss_reduced = apply_loss_reduction(loss, reduction);
loss.resize_as_(loss_reduced).copy_(loss_reduced);
}
return loss;
}
Tensor binary_cross_entropy_backward_cpu(const Tensor& grad, const Tensor& input, const Tensor& target, const c10::optional<Tensor>& weight_opt, int64_t reduction) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
Tensor grad_input = at::empty_like(input);
return at::native::binary_cross_entropy_backward_out_cpu(
grad, input, target, weight, reduction, grad_input);
}
Tensor& binary_cross_entropy_backward_out_cpu(const Tensor& grad, const Tensor& input, const Tensor& target, const c10::optional<Tensor>& weight_opt, int64_t reduction, Tensor& grad_input) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
Tensor grad_input_squeezed = at::squeeze(grad_input);
auto iter = TensorIteratorConfig()
.add_output(grad_input_squeezed)
.add_owned_input(at::squeeze(grad))
.add_owned_input(at::squeeze(input))
.add_owned_input(at::squeeze(target))
.build();
AT_DISPATCH_FLOATING_TYPES(grad_input.scalar_type(), "binary_cross_entropy_backward", [&] {
at::native::cpu_kernel(
iter,
[] (scalar_t grad_val, scalar_t input_val, scalar_t target_val) {
// The gradient is the partial derivative of BCELoss
// with respect to x
// d(L)/d(x) = -w (y - x) / (x - x^2)
return grad_val * (input_val - target_val)
/ (scalar_t(std::max(
(scalar_t(1) - input_val) * input_val,
scalar_t(EPSILON)
)));
}
);
});
if (weight.defined()) {
grad_input.mul_(weight);
}
if (reduction == at::Reduction::Mean) {
grad_input.div_(input.numel());
}
return grad_input;
}
Tensor binary_cross_entropy_with_logits(const Tensor& input, const Tensor& target, const c10::optional<Tensor>& weight_opt, const c10::optional<Tensor>& pos_weight_opt, int64_t reduction) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
c10::MaybeOwned<Tensor> pos_weight_maybe_owned = at::borrow_from_optional_tensor(pos_weight_opt);
const Tensor& pos_weight = *pos_weight_maybe_owned;
Tensor loss;
auto max_val = (-input).clamp_min_(0);
if (pos_weight.defined()) {
// pos_weight need to be broadcasted, thus mul(target) is not inplace.
auto log_weight = (pos_weight - 1).mul(target).add_(1);
loss = (1 - target).mul_(input).add_(log_weight.mul_(((-max_val).exp_().add_((-input - max_val).exp_())).log_().add_(max_val)));
} else {
loss = (1 - target).mul_(input).add_(max_val).add_((-max_val).exp_().add_((-input -max_val).exp_()).log_());
}
if (weight.defined()) {
loss.mul_(weight);
}
return apply_loss_reduction(loss, reduction);
}
Tensor poisson_nll_loss(const Tensor& input, const Tensor& target, const bool log_input, const bool full, const double eps, const int64_t reduction)
{
Tensor loss;
if (log_input) {
loss = at::exp(input) - target * input;
} else {
loss = input - target * at::log(input + eps);
}
if (full) {
auto stirling_term = target * at::log(target) - target + 0.5 * at::log(2 * c10::pi<double> * target);
loss += stirling_term.masked_fill(target <= 1, 0);
}
return apply_loss_reduction(loss, reduction);
}
Tensor& soft_margin_loss_backward_out(const Tensor& grad_output, const Tensor& input, const Tensor& target, int64_t reduction, Tensor& grad_input) {
auto norm = reduction == Reduction::Mean ? 1. / input.numel() : 1.;
auto z = at::exp(-target * input);
// inplace version of: grad_input = -norm * target * z / (1. + z) * grad_output;
at::mul_out(grad_input, target, z).mul_(-norm);
z.add_(1);
grad_input.div_(z).mul_(grad_output);
return grad_input;
}
Tensor soft_margin_loss_backward(const Tensor& grad_output, const Tensor& input, const Tensor& target, int64_t reduction) {
auto grad_input = at::empty({0}, input.options());
at::soft_margin_loss_backward_out(grad_input, grad_output, input, target, reduction);
return grad_input;
}
Tensor& soft_margin_loss_out(const Tensor& input,
const Tensor& target,
int64_t reduction,
Tensor& output) {
// compute inplace variant of: output = at::log1p(at::exp(-input * target));
at::neg_out(output, input).mul_(target).exp_().log1p_();
if (reduction != Reduction::None) {
auto tmp = apply_loss_reduction(output, reduction);
output.resize_({});
output.copy_(tmp);
}
return output;
}
Tensor soft_margin_loss(
const Tensor& input,
const Tensor& target,
int64_t reduction) {
auto output = at::empty({0}, input.options());
at::soft_margin_loss_out(output, input, target, reduction);
return output;
}
Tensor& smooth_l1_loss_backward_out(const Tensor& grad_output, const Tensor& input, const Tensor& target, int64_t reduction, double beta, Tensor& grad_input) {
auto norm = reduction == Reduction::Mean ? 1. / input.numel() : 1.;
auto iter = at::TensorIteratorConfig()
.add_output(grad_input)
.add_input(input)
.add_input(target)
.add_input(grad_output)
.promote_inputs_to_common_dtype(true)
.cast_common_dtype_to_outputs(true)
.enforce_safe_casting_to_output(true)
.build();
smooth_l1_backward_stub(iter.device_type(), iter, norm, beta);
return grad_input;
}
Tensor smooth_l1_loss_backward(const Tensor& grad_output, const Tensor& input, const Tensor& target, int64_t reduction, double beta) {
auto grad_input = at::zeros_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
return at::smooth_l1_loss_backward_out(grad_input, grad_output, input, target, reduction, beta);
}
Tensor huber_loss(const Tensor& input, const Tensor& target, int64_t reduction, double delta) {
TORCH_CHECK(delta > 0, "huber_loss does not support non-positive values for delta.")
Tensor loss = at::empty_like(input);
auto iter = TensorIterator::borrowing_binary_op(loss, input, target);
huber_stub(iter.device_type(), iter, delta);
return apply_loss_reduction(loss, reduction);
}
Tensor& huber_loss_out(const Tensor& input, const Tensor& target, int64_t reduction, double delta, Tensor& result) {
TORCH_CHECK(delta > 0, "huber_loss does not support non-positive values for delta.")
auto iter = TensorIterator::borrowing_binary_op(result, input, target);
huber_stub(iter.device_type(), iter, delta);
if (reduction != Reduction::None) {
auto reduced = apply_loss_reduction(result, reduction);
result.resize_({});
result.copy_(reduced);
}
return result;
}
Tensor huber_loss_backward(const Tensor& grad_output, const Tensor& input, const Tensor& target, int64_t reduction, double delta) {
auto grad_input = at::zeros_like(input, MemoryFormat::Contiguous);
return at::huber_loss_backward_out(grad_input, grad_output, input, target, reduction, delta);
}
Tensor& huber_loss_backward_out(const Tensor& grad_output, const Tensor& input, const Tensor& target, int64_t reduction, double delta, Tensor& grad_input) {
auto norm = (reduction == Reduction::Mean) ? (1. / input.numel()) : 1.;
auto iter = at::TensorIteratorConfig()
.add_output(grad_input)
.add_input(input)
.add_input(target)
.add_input(grad_output)
.build();
huber_backward_stub(iter.device_type(), iter, norm, delta);
return grad_input;
}
Tensor mse_loss_backward(const Tensor& grad_output, const Tensor& input, const Tensor& target, int64_t reduction) {
Tensor grad_input = at::zeros_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
return at::mse_loss_backward_out(grad_input, grad_output, input, target, reduction);
}
Tensor& mse_loss_backward_out(const Tensor& grad_output,
const Tensor& input, const Tensor& target, int64_t reduction, Tensor& grad_input) {
auto norm = reduction == Reduction::Mean ? 2. / input.numel() : 2.;
auto iter = at::TensorIteratorConfig()
.add_output(grad_input)
.add_input(input)
.add_input(target)
.add_input(grad_output)
.build();
mse_backward_stub(iter.device_type(), iter, norm);
return grad_input;
}
Tensor l1_loss(const Tensor& input, const Tensor& target, int64_t reduction) {
return apply_loss_reduction((input - target).abs(), reduction);
}
}} // namespace at::native