blob: f6e09cc49f53403340af6c48c10936f7e15ff7c4 [file] [log] [blame]
# -*- coding: utf-8 -*-
from torch.testing._internal.common_utils import run_tests
import copy
import numpy as np
import io
import logging
from itertools import product
import torch
import torch.quantization as tq
# Hopefully, the `mo` namespace will move under `nn`
from torch import nn
from torch.ao.nn.sparse import quantized as ao_nn_sq
from torch.ao.nn.sparse.quantized.utils import QNNPACKLinearBlockSparsePattern
from torch.testing._internal.common_utils import TestCase
from torch.testing._internal.common_quantized import (
override_cpu_allocator_for_qnnpack,
override_qengines,
qengine_is_qnnpack,
qengine_is_fbgemm,
)
# TODO: Once more test files are created, move the contents to a ao folder.
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO)
class TestQuantizedSparseKernels(TestCase):
@override_qengines
def test_sparse_qlinear(self):
batch_size = 12
input_channels = 16
output_channels = 4
decimal_val = 4
row_block_size = 1
col_block_size = 4
# X86 implementation of sparse ops in qnnpack only support
# block pattern 1x4.
# arm kernels have support for both 1x4 and 8x1.
# This distinction is only because x86 implementations exist
# only to enable testing of integration path.
# We do plan to add 8x1 as well so that testing does not have to
# special case like this. At the moment it is deprioritized due
# to other higher priority works.
if qengine_is_qnnpack() and not (row_block_size == 1 and col_block_size == 4):
return
dense_prepack = torch.ops.quantized.linear_prepack
dense_qlinear = torch.ops.quantized.linear
dense_qlinear_dynamic = torch.ops.quantized.linear_dynamic
sparse_prepack = torch.ops.sparse.qlinear_prepack
sparse_qlinear = torch.ops.sparse.qlinear
sparse_qlinear_dynamic = torch.ops.sparse.qlinear_dynamic
X_scale = 0.2
X_zp = 2
X_fp32 = torch.randn(batch_size, input_channels, dtype=torch.float32)
float_bias = torch.randn(output_channels, dtype=torch.float32)
W_scales = torch.rand(output_channels, dtype=torch.float32)
W_zps = torch.zeros(output_channels, dtype=torch.int32)
W_fp32 = torch.randn(output_channels, input_channels, dtype=torch.float32)
with override_cpu_allocator_for_qnnpack(qengine_is_qnnpack()):
X_q = torch.quantize_per_tensor(
X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8
)
for use_channelwise, dynamic_mode in product([True, False], [True, False]):
if qengine_is_fbgemm() and dynamic_mode:
logging.info("dynamic sparse qlinear is only available in qnnpack")
continue
if qengine_is_qnnpack() and not dynamic_mode:
logging.info("static sparse qlinear is only available in fbgemm")
continue
if use_channelwise:
W_q = torch.quantize_per_channel(
W_fp32, scales=W_scales, zero_points=W_zps, axis=0, dtype=torch.qint8
)
else:
W_q = torch.quantize_per_tensor(
W_fp32, scale=W_scales[0], zero_point=W_zps[0], dtype=torch.qint8
)
Y_scale = 1.1234
Y_zp = 5
W_prepack_dense = dense_prepack(W_q, float_bias)
W_prepack_sparse = sparse_prepack(W_q, float_bias, row_block_size, col_block_size)
if dynamic_mode:
Y = sparse_qlinear_dynamic(X_fp32, W_prepack_sparse)
Y_ref = dense_qlinear_dynamic(X_fp32, W_prepack_dense)
np.testing.assert_array_almost_equal(Y_ref.numpy(), Y.numpy(), decimal=decimal_val)
else:
Y_q = sparse_qlinear(X_q, W_prepack_sparse, Y_scale, Y_zp)
Y_q_ref = dense_qlinear(X_q, W_prepack_dense, Y_scale, Y_zp)
np.testing.assert_array_almost_equal(
Y_q_ref.int_repr().numpy(), Y_q.int_repr().numpy(), decimal=decimal_val
)
class TestQuantizedSparseLayers(TestCase):
class SparseQuantizedModel(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.linear = nn.Linear(in_channels, out_channels)
def forward(self, x):
return self.linear(x)
@override_qengines
def test_sparse_qlinear(self):
batch_size = 12
input_channels = 4
output_channels = 7
model = self.SparseQuantizedModel(input_channels, output_channels)
# For sparse kernels both the activation and weight ZP = 0
X_scale = 0.2
X_zp = 2
W_scale = 1e-2
W_zp = 0
X_fp32 = torch.randn(batch_size, input_channels, dtype=torch.float32)
float_bias = torch.randn(output_channels, dtype=torch.float32)
W_fp32 = torch.randn(output_channels, input_channels, dtype=torch.float32)
mask = torch.randint(0, 2, W_fp32.shape)
W_fp32 *= mask
with override_cpu_allocator_for_qnnpack(qengine_is_qnnpack()):
X_q = torch.quantize_per_tensor(
X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8
)
X_fp32 = X_q.dequantize()
W_q = torch.quantize_per_tensor(W_fp32, W_scale, W_zp, torch.qint8)
model.weight = nn.Parameter(W_q.dequantize())
model.eval()
# Note: At the moment, for sparse kernels
# fbgemm supports only static quantized sparse linear
# qnnpack supports only dynamically quantized sparse linear
# Hence we have two different tests.
# fbgemm tests static flow, qnnpack tests dynamic.
# Should be unified later on and tests should be fixed
# appropriately.
if qengine_is_fbgemm():
model.qconfig = tq.get_default_qconfig('fbgemm')
qmodel = copy.deepcopy(model)
sqmodel = copy.deepcopy(model)
tq.prepare(qmodel, inplace=True)
tq.prepare(sqmodel, inplace=True)
with torch.no_grad():
qmodel(X_fp32)
sqmodel(X_fp32)
# Make sure the quantization parameters are computed the same way
qparams = qmodel.linear.qconfig.weight().calculate_qparams()
sqparams = sqmodel.linear.qconfig.weight().calculate_qparams()
self.assertEqual(qparams, sqparams)
# Make sure mapping of sparse kernels does not affect the non-sparse
sparse_mapping = tq.get_default_static_quant_module_mappings()
sparse_mapping[nn.Linear] = ao_nn_sq.Linear
tq.convert(sqmodel, inplace=True, mapping=sparse_mapping)
tq.convert(qmodel, inplace=True)
assert isinstance(sqmodel.linear, ao_nn_sq.Linear), "Convert failed"
assert isinstance(qmodel.linear, nn.quantized.Linear), "Mapping failed"
# Make sure numerics are right
Y_ref = qmodel(X_q)
Y_hat = sqmodel(X_q)
self.assertEqual(Y_ref.dequantize(), Y_hat.dequantize())
if qengine_is_qnnpack():
qconfig = {nn.Linear : tq.qconfig.default_dynamic_qconfig}
dqmodel = copy.deepcopy(model)
sdqmodel = copy.deepcopy(model)
tq.propagate_qconfig_(dqmodel, qconfig)
tq.propagate_qconfig_(sdqmodel, qconfig)
# Make sure the quantization parameters are computed the same way
qparams = dqmodel.linear.qconfig.weight().calculate_qparams()
sqparams = sdqmodel.linear.qconfig.weight().calculate_qparams()
self.assertEqual(qparams, sqparams)
# Make sure mapping of sparse kernels does not affect the non-sparse
sparse_mapping = copy.deepcopy(tq.get_default_dynamic_quant_module_mappings())
sparse_mapping[nn.Linear] = ao_nn_sq.dynamic.Linear
with QNNPACKLinearBlockSparsePattern(1, 4):
tq.convert(sdqmodel, inplace=True, mapping=sparse_mapping)
tq.convert(dqmodel, mapping=tq.get_default_dynamic_quant_module_mappings(), inplace=True)
assert isinstance(sdqmodel.linear, ao_nn_sq.dynamic.Linear), "Convert failed"
assert isinstance(dqmodel.linear, nn.quantized.dynamic.Linear), "Mapping failed"
# Make sure numerics are right
Y_ref = dqmodel(X_fp32)
Y_hat = sdqmodel(X_fp32)
self.assertEqual(Y_ref, Y_hat)
@override_qengines
def test_sparse_qlinear_serdes(self):
batch_size = 12
input_channels = 4
output_channels = 7
model = self.SparseQuantizedModel(input_channels, output_channels)
# For sparse kernels both the activation and weight ZP = 0
X_scale = 0.2
X_zp = 0
W_scale = 1e-2
W_zp = 0
with override_cpu_allocator_for_qnnpack(qengine_is_qnnpack()):
X_fp32 = torch.randn(batch_size, input_channels, dtype=torch.float32)
float_bias = torch.randn(output_channels, dtype=torch.float32)
X_q = torch.quantize_per_tensor(
X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8
)
X_fp32 = X_q.dequantize()
W_fp32 = torch.randn(output_channels, input_channels, dtype=torch.float32)
mask = torch.randint(0, 2, W_fp32.shape)
W_fp32 *= mask
W_q = torch.quantize_per_tensor(W_fp32, W_scale, W_zp, torch.qint8)
model.weight = nn.Parameter(W_q.dequantize())
model.eval()
# Note: At the moment, for sparse kernels
# fbgemm supports only static quantized sparse linear
# qnnpack supports only dynamically quantized sparse linear
# Hence we have two different tests.
# fbgemm tests static flow, qnnpack tests dynamic.
# Should be unified later on and tests should be fixed
# appropriately.
if qengine_is_fbgemm():
model.qconfig = tq.get_default_qconfig('fbgemm')
qmodel = copy.deepcopy(model)
sqmodel = copy.deepcopy(model)
tq.prepare(qmodel, inplace=True)
tq.prepare(sqmodel, inplace=True)
with torch.no_grad():
qmodel(X_fp32)
sqmodel(X_fp32)
# Make sure the quantization parameters are computed the same way
qparams = qmodel.linear.qconfig.weight().calculate_qparams()
sqparams = sqmodel.linear.qconfig.weight().calculate_qparams()
self.assertEqual(qparams, sqparams)
# Make sure mapping of sparse kernels does not affect the non-sparse
sparse_mapping = tq.get_default_static_quant_module_mappings()
sparse_mapping[nn.Linear] = ao_nn_sq.Linear
tq.convert(sqmodel, inplace=True, mapping=sparse_mapping)
tq.convert(qmodel, inplace=True)
assert isinstance(sqmodel.linear, ao_nn_sq.Linear), "Convert failed"
assert isinstance(qmodel.linear, nn.quantized.Linear), "Mapping failed"
scripted_sqmodel = torch.jit.script(sqmodel)
scripted_sqmodel.eval()
buffer = io.BytesIO()
torch.jit.save(scripted_sqmodel, buffer)
buffer.seek(0)
sqmodel = torch.jit.load(buffer)
# Make sure numerics are right
Y_ref = qmodel(X_q)
Y_hat = sqmodel(X_q)
self.assertEqual(Y_ref.dequantize(), Y_hat.dequantize())
if qengine_is_qnnpack():
qconfig = {nn.Linear : tq.qconfig.default_dynamic_qconfig}
dqmodel = copy.deepcopy(model)
sdqmodel = copy.deepcopy(model)
tq.propagate_qconfig_(dqmodel, qconfig)
tq.propagate_qconfig_(sdqmodel, qconfig)
# Make sure the quantization parameters are computed the same way
qparams = dqmodel.linear.qconfig.weight().calculate_qparams()
sqparams = sdqmodel.linear.qconfig.weight().calculate_qparams()
self.assertEqual(qparams, sqparams)
# Make sure mapping of sparse kernels does not affect the non-sparse
sparse_mapping = copy.deepcopy(tq.get_default_dynamic_quant_module_mappings())
sparse_mapping[nn.Linear] = ao_nn_sq.dynamic.Linear
with QNNPACKLinearBlockSparsePattern(1, 4):
tq.convert(sdqmodel, inplace=True, mapping=sparse_mapping)
tq.convert(dqmodel, mapping=tq.get_default_dynamic_quant_module_mappings(), inplace=True)
assert isinstance(sdqmodel.linear, ao_nn_sq.dynamic.Linear), "Convert failed"
assert isinstance(dqmodel.linear, nn.quantized.dynamic.Linear), "Mapping failed"
scripted_sdqmodel = torch.jit.script(sdqmodel)
scripted_sdqmodel.eval()
buffer = io.BytesIO()
torch.jit.save(scripted_sdqmodel, buffer)
buffer.seek(0)
sdqmodel = torch.jit.load(buffer)
# Make sure numerics are right
Y_ref = dqmodel(X_fp32)
Y_hat = sdqmodel(X_fp32)
self.assertEqual(Y_ref, Y_hat)
if __name__ == '__main__':
run_tests()