|  | import torch | 
|  |  | 
|  | from . import benchmark | 
|  |  | 
|  |  | 
|  | class SwishBench(benchmark.Benchmark): | 
|  | def __init__(self, mode, device, dtype, M, N): | 
|  | super().__init__(mode, device, dtype) | 
|  | self.M = M | 
|  | self.N = N | 
|  | self.data = self.rand( | 
|  | [M, N], device=device, dtype=dtype, requires_grad=self.requires_grad | 
|  | ) | 
|  | self.inputs = [self.data] | 
|  | self.zeros = torch.zeros(M, N, device=device) | 
|  | self.six = self.zeros + 6.0 | 
|  | self.three = self.zeros + 3.0 | 
|  | self.sixth = self.zeros + 1.0 / 6.0 | 
|  |  | 
|  | def forward(self, inp): | 
|  | y = inp * (torch.min(torch.relu(inp), self.six) + self.three) * self.sixth | 
|  | return y | 
|  |  | 
|  | def reference(self): | 
|  | return self.numpy(self.forward(self.data)) | 
|  |  | 
|  | def config(self): | 
|  | return [self.M, self.N] | 
|  |  | 
|  | @staticmethod | 
|  | def module(): | 
|  | return "swish" | 
|  |  | 
|  | def memory_workload(self): | 
|  | if self.mode == "fwd": | 
|  | sol_count = 1 + 1 | 
|  | algorithmic_count = 3 + 1 | 
|  | else: | 
|  | sol_count = (1 + 1) + (1 + 1) | 
|  | algorithmic_count = (3 + 1) + (3 + 1) | 
|  |  | 
|  | buffer_size = self.M * self.N | 
|  | return { | 
|  | "sol": buffer_size * sol_count, | 
|  | "algorithmic": buffer_size * algorithmic_count, | 
|  | } | 
|  |  | 
|  | @staticmethod | 
|  | def default_configs(): | 
|  | return [[128, 1 << 16]] | 
|  |  | 
|  |  | 
|  | benchmark.register_benchmark_class(SwishBench) |