blob: d32b4c159bac1f706149ab643eb7ca65f030af7a [file] [log] [blame]
import contextlib
import torch
from typing import List
@contextlib.contextmanager
def optimized_execution(should_optimize):
"""
A context manager that controls whether the JIT's executor will run
optimizations before executing a function.
"""
stored_flag = torch._C._get_graph_executor_optimize()
torch._C._set_graph_executor_optimize(should_optimize)
try:
yield
finally:
torch._C._set_graph_executor_optimize(stored_flag)
@contextlib.contextmanager
def fuser(name):
"""
A context manager that facilitates switching between
backend fusers.
Valid names:
* ``fuser0`` - enables only legacy fuser
* ``fuser1`` - enables only NNC
* ``fuser2`` - enables only nvFuser
"""
old_cpu_fuse = torch._C._jit_can_fuse_on_cpu()
old_gpu_fuse = torch._C._jit_can_fuse_on_gpu()
old_texpr_fuser_state = torch._C._jit_texpr_fuser_enabled()
old_nvfuser_state = torch._C._jit_nvfuser_enabled()
if name == 'fuser0': # legacy fuser
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(False)
elif name == 'fuser1': # NNC
old_profiling_executor = torch._C._jit_set_profiling_executor(True)
old_profiling_mode = torch._C._jit_set_profiling_mode(True)
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(True)
torch._C._jit_set_texpr_fuser_enabled(True)
torch._C._jit_set_nvfuser_enabled(False)
elif name == 'fuser2': # nvFuser
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(True)
else:
raise Exception("unrecognized fuser option")
try:
yield
finally:
if name == 'fuser1': # NNC
torch._C._jit_set_profiling_executor(old_profiling_executor)
torch._C._jit_set_profiling_mode(old_profiling_mode)
# recover the previous values
torch._C._jit_override_can_fuse_on_cpu(old_cpu_fuse)
torch._C._jit_override_can_fuse_on_gpu(old_gpu_fuse)
torch._C._jit_set_texpr_fuser_enabled(old_texpr_fuser_state)
torch._C._jit_set_nvfuser_enabled(old_nvfuser_state)
last_executed_optimized_graph = torch._C._last_executed_optimized_graph
def _get_differentiable_graph_node(node, diff_node):
if node.kind() == 'prim::DifferentiableGraph':
diff_node.append(node)
else:
for block in node.blocks():
for n in block.nodes():
_get_differentiable_graph_node(n, diff_node)
def _graph_for(self, *args, **kwargs):
return _script_method_graph_for(self, self, *args, **kwargs)
def _script_method_graph_for(self, parent, *args, **kwargs):
try:
dbs = parent.get_debug_state()
eps = list(dbs.execution_plans.values())
assert(len(eps) == 1)
graph = eps[0].graph.copy()
# graph_executor_states for differentiable node
fw_states = eps[0].code.differentiable_op_executor_states()
diff_nodes: List[torch._C.Node] = []
for n in graph.nodes():
_get_differentiable_graph_node(n, diff_nodes)
assert(len(fw_states) == len(diff_nodes))
# swap each differentiable graph with optimized graph in their execution plan
for n, state in zip(diff_nodes, fw_states):
fw_execution_plans = list(state.execution_plans.values())
# we can only update the subgraph when there's a unique execution
# plan. Avoid assert here so we would skip the ones that can't be
# updated while try the best effort to update other nodes.
if len(fw_execution_plans) == 1:
n.g_('Subgraph', fw_execution_plans[0].graph)
return graph
except Exception:
# fallback approach, we just ran the graph and return the recorded optimized
# graph
self(*args, **kwargs)
return last_executed_optimized_graph()