| import torch |
| from . import _functional as F |
| from .optimizer import Optimizer |
| |
| |
| class RAdam(Optimizer): |
| r"""Implements RAdam algorithm. |
| |
| .. math:: |
| \begin{aligned} |
| &\rule{110mm}{0.4pt} \\ |
| &\textbf{input} : \gamma \text{ (lr)}, \: \beta_1, \beta_2 |
| \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \: |
| \lambda \text{ (weightdecay)}, \\ |
| &\hspace{13mm} \epsilon \text{ (epsilon)} \\ |
| &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, |
| v_0 \leftarrow 0 \text{ ( second moment)}, \\ |
| &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1 \\[-1.ex] |
| &\rule{110mm}{0.4pt} \\ |
| &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
| &\hspace{6mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
| &\hspace{5mm} \textbf{if} \: \lambda \neq 0 \\ |
| &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ |
| &\hspace{6mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ |
| &\hspace{6mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ |
| &\hspace{6mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\ |
| &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} - |
| 2 t \beta^t_2 /\big(1-\beta_2^t \big) \\[0.1.ex] |
| &\hspace{6mm}\textbf{if} \: \rho_t > 5 \\ |
| &\hspace{12mm} l_t \leftarrow \sqrt{ (1-\beta^t_2) / \big( v_t +\epsilon \big) } \\ |
| &\hspace{12mm} r_t \leftarrow |
| \sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\ |
| &\hspace{12mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t} r_t l_t \\ |
| &\hspace{6mm}\textbf{else} \\ |
| &\hspace{12mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t} \\ |
| &\rule{110mm}{0.4pt} \\[-1.ex] |
| &\bf{return} \: \theta_t \\[-1.ex] |
| &\rule{110mm}{0.4pt} \\[-1.ex] |
| \end{aligned} |
| |
| For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_. |
| |
| Args: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 1e-3) |
| betas (Tuple[float, float], optional): coefficients used for computing |
| running averages of gradient and its square (default: (0.9, 0.999)) |
| eps (float, optional): term added to the denominator to improve |
| numerical stability (default: 1e-8) |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
| |
| .. _On the variance of the adaptive learning rate and beyond: |
| https://arxiv.org/abs/1908.03265 |
| """ |
| |
| def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, |
| weight_decay=0): |
| if not 0.0 <= lr: |
| raise ValueError("Invalid learning rate: {}".format(lr)) |
| if not 0.0 <= eps: |
| raise ValueError("Invalid epsilon value: {}".format(eps)) |
| if not 0.0 <= betas[0] < 1.0: |
| raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
| if not 0.0 <= betas[1] < 1.0: |
| raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
| if not 0.0 <= weight_decay: |
| raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
| defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) |
| super(RAdam, self).__init__(params, defaults) |
| |
| @torch.no_grad() |
| def step(self, closure=None): |
| """Performs a single optimization step. |
| |
| Args: |
| closure (callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| with torch.enable_grad(): |
| loss = closure() |
| |
| for group in self.param_groups: |
| params_with_grad = [] |
| grads = [] |
| exp_avgs = [] |
| exp_avg_sqs = [] |
| max_exp_avg_sqs = [] |
| state_steps = [] |
| beta1, beta2 = group['betas'] |
| |
| for p in group['params']: |
| if p.grad is not None: |
| params_with_grad.append(p) |
| if p.grad.is_sparse: |
| raise RuntimeError('RAdam does not support sparse gradients') |
| grads.append(p.grad) |
| |
| state = self.state[p] |
| # Lazy state initialization |
| if len(state) == 0: |
| state['step'] = 0 |
| # Exponential moving average of gradient values |
| state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
| # Exponential moving average of squared gradient values |
| state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
| |
| exp_avgs.append(state['exp_avg']) |
| exp_avg_sqs.append(state['exp_avg_sq']) |
| |
| # update the steps for each param group update |
| state['step'] += 1 |
| # record the step after step update |
| state_steps.append(state['step']) |
| |
| F.radam(params_with_grad, |
| grads, |
| exp_avgs, |
| exp_avg_sqs, |
| state_steps, |
| beta1=beta1, |
| beta2=beta2, |
| lr=group['lr'], |
| weight_decay=group['weight_decay'], |
| eps=group['eps']) |
| return loss |