| #include "elementwise_linear_op.h" | 
 |  | 
 | namespace caffe2 { | 
 |  | 
 | template<> | 
 | bool ElementwiseLinearOp<float, CPUContext>::RunOnDevice(){ | 
 |   const auto& X = Input(0); | 
 |   const auto& a = Input(1); | 
 |   const auto& b = Input(2); | 
 |  | 
 |   const auto canonical_axis = X.canonical_axis_index(axis_); | 
 |   const int N = X.size_to_dim(canonical_axis); | 
 |   const int D = X.size_from_dim(canonical_axis); | 
 |  | 
 |   CAFFE_ENFORCE_EQ(a.dim(), 1, a.dim()); | 
 |   CAFFE_ENFORCE_EQ(a.size(0), D, a.dim()); | 
 |   CAFFE_ENFORCE_EQ(b.dim(), 1, b.dim()); | 
 |   CAFFE_ENFORCE_EQ(b.size(0), D, b.dim()); | 
 |  | 
 |   auto* Y = Output(0, X.sizes(), at::dtype<float>()); | 
 |  | 
 |   const float* X_data = X.data<float>(); | 
 |   const float* a_data = a.data<float>(); | 
 |   const float* b_data = b.data<float>(); | 
 |   float* Y_data = Y->template mutable_data<float>(); | 
 |  | 
 |   int p = 0; | 
 |   for (int n = 0; n < N; ++n) { | 
 |     for (int d = 0; d < D; ++d) { | 
 |       Y_data[p] = X_data[p] * a_data[d] + b_data[d]; | 
 |       p++; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template<> | 
 | bool ElementwiseLinearGradientOp<float, CPUContext>::RunOnDevice(){ | 
 |   const auto& g_o = Input(0); | 
 |   const auto& X = Input(1); | 
 |   const auto& a = Input(2); | 
 |  | 
 |   const auto canonical_axis = X.canonical_axis_index(axis_); | 
 |   const int N = X.size_to_dim(canonical_axis); | 
 |   const int D = X.size_from_dim(canonical_axis); | 
 |  | 
 |   CAFFE_ENFORCE_EQ(a.dim(), 1, a.dim()); | 
 |   CAFFE_ENFORCE_EQ(a.size(0), D, a.dim()); | 
 |  | 
 |   auto* g_X = Output(0, X.sizes(), at::dtype<float>()); | 
 |   auto* g_a = Output(1, a.sizes(), at::dtype<float>()); | 
 |   auto* g_b = Output(2, a.sizes(), at::dtype<float>()); | 
 |  | 
 |   const float* g_o_data = g_o.data<float>(); | 
 |   const float* X_data = X.data<float>(); | 
 |   const float* a_data = a.data<float>(); | 
 |   float* g_X_data = g_X->template mutable_data<float>(); | 
 |   float* g_a_data = g_a->template mutable_data<float>(); | 
 |   float* g_b_data = g_b->template mutable_data<float>(); | 
 |  | 
 |   math::Set<float, CPUContext>(g_a->numel(), 0.f, g_a_data, &context_); | 
 |   math::Set<float, CPUContext>(g_b->numel(), 0.f, g_b_data, &context_); | 
 |  | 
 |   int p = 0; | 
 |   for (int n = 0; n < N; ++n) { | 
 |     for (int d = 0; d < D; ++d) { | 
 |       g_X_data[p] = g_o_data[p] * a_data[d]; | 
 |       g_a_data[d] += g_o_data[p] * X_data[p]; | 
 |       g_b_data[d] += g_o_data[p]; | 
 |       p++; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | REGISTER_CPU_OPERATOR( | 
 |   ElementwiseLinear, | 
 |   ElementwiseLinearOp<float, CPUContext>); | 
 | REGISTER_CPU_OPERATOR( | 
 |   ElementwiseLinearGradient, | 
 |   ElementwiseLinearGradientOp<float, CPUContext>); | 
 |  | 
 | OPERATOR_SCHEMA(ElementwiseLinear) | 
 |     .NumInputs(3) | 
 |     .NumOutputs(1) | 
 |     .SetDoc(R"DOC( | 
 | This op computes the elementwise linear combination of a batch of input vectors with a weight vector and bias vector. As input, the op takes an input tensor $X$ of shape $NxD$, a weight vector $w$ of length $D$, and a bias vector $b$ of length $D$. Here, $N$ represents the batch size and $D$ represents the length of the feature vectors. The output, $Y$, is a tensor of shape $NxD$ and is calculated as | 
 |  | 
 | $$Y_{ij} = X_{ij}w_j + b_j \ for \ i\in{N}, j\in{D}$$ | 
 |  | 
 | Github Links: | 
 | - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/elementwise_linear_op.h | 
 | - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/elementwise_linear_op.cc | 
 |  | 
 | <details> | 
 |  | 
 | <summary> <b>Example</b> </summary> | 
 |  | 
 | **Code** | 
 |  | 
 | ``` | 
 |  | 
 | workspace.ResetWorkspace() | 
 |  | 
 | op = core.CreateOperator( | 
 |     "ElementwiseLinear", | 
 |     ["X", "w", "b"], | 
 |     ["Y"] | 
 | ) | 
 |  | 
 | // Create X | 
 | X = np.array([[1,2,3,4,5],[6,8,9,16,10]]) | 
 | print("X:\n",X) | 
 |  | 
 | // Create w | 
 | w = np.array([1,1/2.,1/3.,1/4.,1/5.]) | 
 | print("w:\n",w) | 
 |  | 
 | // Create b | 
 | b = np.array([1.,1.,1.,1.,1.]) | 
 | print("b:\n",b) | 
 |  | 
 |  | 
 | // Feed X & w & b into workspace | 
 | workspace.FeedBlob("X", X.astype(np.float32)) | 
 | workspace.FeedBlob("w", w.astype(np.float32)) | 
 | workspace.FeedBlob("b", b.astype(np.float32)) | 
 |  | 
 | // Run op | 
 | workspace.RunOperatorOnce(op) | 
 |  | 
 | // Collect Output | 
 | print("Y:\n", workspace.FetchBlob("Y")) | 
 |  | 
 | ``` | 
 |  | 
 | **Result** | 
 |  | 
 | ``` | 
 |  | 
 | X: | 
 |  [[ 1  2  3  4  5] | 
 |  [ 6  8  9 16 10]] | 
 | w: | 
 |  [1.  0.5  0.33333333 0.25  0.2] | 
 | b: | 
 |  [1. 1. 1. 1. 1.] | 
 | Y: | 
 |  [[2. 2. 2. 2. 2.] | 
 |  [7. 5. 4. 5. 3.]] | 
 |  | 
 | ``` | 
 |  | 
 | </details> | 
 |  | 
 |   )DOC") | 
 |     .Input(0, "X", "2D input tensor of size $NxD$. This input represents the input data to be operated on.") | 
 |     .Input(1, "w", "1D scaling factors, or weights, of size $D$. This input contains the weights that will be multiplied by the data.") | 
 |     .Input(2, "b", "1D biases of size $D$. This input contains the biases that will be added to the products of the weights and data.") | 
 |     .Output(0, "Y", "2D output tensor of size $NxD$. Calculated as described above.") | 
 |     .Arg("axis", "*(type: int; default: 1)* Describes the axis of the inputs; defaults to one because the 0th axis most likely describes the batch size."); | 
 |  | 
 | OPERATOR_SCHEMA(ElementwiseLinearGradient) | 
 |   .NumInputs(3) | 
 |   .NumOutputs(3); | 
 |  | 
 | struct GetElementwiseLinearGradient : public GradientMakerBase { | 
 |   using GradientMakerBase::GradientMakerBase; | 
 |   vector<OperatorDef> GetGradientDefs() override { | 
 |     return SingleGradientDef( | 
 |       "ElementwiseLinearGradient", | 
 |       "", | 
 |       vector<string>{GO(0), I(0), I(1)}, | 
 |       vector<string>{GI(0), GI(1), GI(2)}); | 
 |     } | 
 | }; | 
 |  | 
 | REGISTER_GRADIENT( | 
 |   ElementwiseLinear, | 
 |   GetElementwiseLinearGradient | 
 | ); | 
 |  | 
 | }  // namespace caffe2 |