| import torch |
| from .optimizer import Optimizer |
| |
| |
| class Adamax(Optimizer): |
| """Implements Adamax algorithm (a variant of Adam based on infinity norm). |
| |
| It has been proposed in `Adam: A Method for Stochastic Optimization`__. |
| |
| Arguments: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 2e-3) |
| betas (Tuple[float, float], optional): coefficients used for computing |
| running averages of gradient and its square |
| eps (float, optional): term added to the denominator to improve |
| numerical stability (default: 1e-8) |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
| |
| __ https://arxiv.org/abs/1412.6980 |
| """ |
| |
| def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8, |
| weight_decay=0): |
| if not 0.0 <= lr: |
| raise ValueError("Invalid learning rate: {}".format(lr)) |
| if not 0.0 <= eps: |
| raise ValueError("Invalid epsilon value: {}".format(eps)) |
| if not 0.0 <= betas[0] < 1.0: |
| raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
| if not 0.0 <= betas[1] < 1.0: |
| raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
| if not 0.0 <= weight_decay: |
| raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
| |
| defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) |
| super(Adamax, self).__init__(params, defaults) |
| |
| def step(self, closure=None): |
| """Performs a single optimization step. |
| |
| Arguments: |
| closure (callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| loss = closure() |
| |
| for group in self.param_groups: |
| for p in group['params']: |
| if p.grad is None: |
| continue |
| grad = p.grad.data |
| if grad.is_sparse: |
| raise RuntimeError('Adamax does not support sparse gradients') |
| state = self.state[p] |
| |
| # State initialization |
| if len(state) == 0: |
| state['step'] = 0 |
| state['exp_avg'] = torch.zeros_like(p.data) |
| state['exp_inf'] = torch.zeros_like(p.data) |
| |
| exp_avg, exp_inf = state['exp_avg'], state['exp_inf'] |
| beta1, beta2 = group['betas'] |
| eps = group['eps'] |
| |
| state['step'] += 1 |
| |
| if group['weight_decay'] != 0: |
| grad = grad.add(group['weight_decay'], p.data) |
| |
| # Update biased first moment estimate. |
| exp_avg.mul_(beta1).add_(1 - beta1, grad) |
| # Update the exponentially weighted infinity norm. |
| norm_buf = torch.cat([ |
| exp_inf.mul_(beta2).unsqueeze(0), |
| grad.abs().add_(eps).unsqueeze_(0) |
| ], 0) |
| torch.max(norm_buf, 0, keepdim=False, out=(exp_inf, exp_inf.new().long())) |
| |
| bias_correction = 1 - beta1 ** state['step'] |
| clr = group['lr'] / bias_correction |
| |
| p.data.addcdiv_(-clr, exp_avg, exp_inf) |
| |
| return loss |