blob: 5e0c2c6ab856f56591c5d15a3ed5f8f7796d56da [file] [log] [blame]
import math
from .optimizer import Optimizer
class Rprop(Optimizer):
def __init__(self, params, lr=1e-2, etas=(0.5, 1.2), step_sizes=(1e-6, 50)):
defaults = dict(lr=lr, etas=etas, step_sizes=step_sizes)
super(Rprop, self).__init__(params, defaults)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
grad = p.grad
state = self.state[id(p)]
# State initialization
if len(state) == 0:
state['step'] = 0
state['prev'] = grad.new().resize_as_(grad).zero_()
state['step_size'] = grad.new().resize_as_(grad).fill_(group['lr'])
etaminus, etaplus = group['etas']
step_size_min, step_size_max = group['step_sizes']
step_size = state['step_size']
state['step'] += 1
sign = grad.mul(state['prev']).sign()
sign[sign.gt(0)] = etaplus
sign[sign.lt(0)] = etaminus
sign[sign.eq(0)] = 1
# update stepsizes with step size updates
step_size.mul_(sign).clamp_(step_size_min, step_size_max)
# for dir<0, dfdx=0
# for dir>=0 dfdx=dfdx
grad = grad.clone()
grad[sign.eq(etaminus)] = 0
# update parameters
p.data.addcmul_(-1, grad.sign(), step_size)
state['prev'].copy_(grad)
return loss