blob: e0dc230b406a04bcc9307e478f4253682b20d43d [file] [log] [blame]
from .optimizer import Optimizer
class Adagrad(Optimizer):
def __init__(self, params, lr=1e-2, lr_decay=0, weight_decay=0):
defaults = dict(lr=lr, lr_decay=lr_decay, weight_decay=weight_decay)
super(Adagrad, self).__init__(params, defaults)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
grad = p.grad
state = self.state[id(p)]
# State initialization
if len(state) == 0:
state['step'] = 0
state['sum'] = grad.new().resize_as_(grad).zero_()
state['step'] += 1
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
clr = group['lr'] / (1 + (state['step'] - 1) * group['lr_decay'])
state['sum'].addcmul_(1, grad, grad)
std = state['sum'].sqrt().add_(1e-10)
p.data.addcdiv_(-clr, grad, std)
return loss