blob: f3a49b289c049c68f56dc210e607c5d13ca4e9ee [file] [log] [blame]
import warnings
import importlib
from inspect import getmembers, isfunction
from typing import Dict, Tuple, Any, Union
# The symbolic registry "_registry" is a dictionary that maps operators
# (for a specific domain and opset version) to their symbolic functions.
# An operator is defined by its domain, opset version, and opname.
# The keys are tuples (domain, version), (where domain is a string, and version is an int),
# and the operator's name (string).
# The map's entries are as follows : _registry[(domain, version)][op_name] = op_symbolic
_registry: Dict[Tuple[str, int], Dict] = {}
_symbolic_versions: Dict[Union[int, str], Any] = {}
from torch.onnx.symbolic_helper import _onnx_stable_opsets, _onnx_main_opset
for opset_version in _onnx_stable_opsets + [_onnx_main_opset]:
module = importlib.import_module("torch.onnx.symbolic_opset{}".format(opset_version))
_symbolic_versions[opset_version] = module
def register_version(domain, version):
if not is_registered_version(domain, version):
global _registry
_registry[(domain, version)] = {}
register_ops_in_version(domain, version)
def register_ops_helper(domain, version, iter_version):
for domain, op_name, op_func in get_ops_in_version(iter_version):
if not is_registered_op(op_name, domain, version):
register_op(op_name, op_func, domain, version)
def register_ops_in_version(domain, version):
# iterates through the symbolic functions of
# the specified opset version, and the previous
# opset versions for operators supported in
# previous versions.
# Opset 9 is the base version. It is selected as the base version because
# 1. It is the first opset version supported by PyTorch export.
# 2. opset 9 is more robust than previous opset versions. Opset versions like 7/8 have limitations
# that certain basic operators cannot be expressed in ONNX. Instead of basing on these limitations,
# we chose to handle them as special cases separately.
# Backward support for opset versions beyond opset 7 is not in our roadmap.
# For opset versions other than 9, by default they will inherit the symbolic functions defined in
# symbolic_opset9.py.
# To extend support for updated operators in different opset versions on top of opset 9,
# simply add the updated symbolic functions in the respective symbolic_opset{version}.py file.
# Checkout topk in symbolic_opset10.py, and upsample_nearest2d in symbolic_opset8.py for example.
iter_version = version
while iter_version != 9:
register_ops_helper(domain, version, iter_version)
if iter_version > 9:
iter_version = iter_version - 1
else:
iter_version = iter_version + 1
register_ops_helper(domain, version, 9)
def get_ops_in_version(version):
members = getmembers(_symbolic_versions[version])
domain_opname_ops = []
for obj in members:
if isinstance(obj[1], type) and hasattr(obj[1], "domain"):
ops = getmembers(obj[1], predicate=isfunction)
for op in ops:
domain_opname_ops.append((obj[1].domain, op[0], op[1])) # type: ignore[attr-defined]
elif isfunction(obj[1]):
if obj[0] == "_len":
obj = ("len", obj[1])
if obj[0] == "_list":
obj = ("list", obj[1])
if obj[0] == "_any":
obj = ("any", obj[1])
if obj[0] == "_all":
obj = ("all", obj[1])
domain_opname_ops.append(("", obj[0], obj[1]))
return domain_opname_ops
def is_registered_version(domain, version):
global _registry
return (domain, version) in _registry
def register_op(opname, op, domain, version):
if domain is None or version is None:
warnings.warn("ONNX export failed. The ONNX domain and/or version to register are None.")
global _registry
if not is_registered_version(domain, version):
_registry[(domain, version)] = {}
_registry[(domain, version)][opname] = op
def is_registered_op(opname, domain, version):
if domain is None or version is None:
warnings.warn("ONNX export failed. The ONNX domain and/or version are None.")
global _registry
return (domain, version) in _registry and opname in _registry[(domain, version)]
def unregister_op(opname, domain, version):
global _registry
if is_registered_op(opname, domain, version):
del _registry[(domain, version)][opname]
if not _registry[(domain, version)]:
del _registry[(domain, version)]
else:
warnings.warn("The opname " + opname + " is not registered.")
def get_op_supported_version(opname, domain, version):
iter_version = version
while iter_version <= _onnx_main_opset:
ops = [(op[0], op[1]) for op in get_ops_in_version(iter_version)]
if (domain, opname) in ops:
return iter_version
iter_version += 1
return None
def get_registered_op(opname, domain, version):
if domain is None or version is None:
warnings.warn("ONNX export failed. The ONNX domain and/or version are None.")
global _registry
if not is_registered_op(opname, domain, version):
raise UnsupportedOperatorError(domain, opname, version)
return _registry[(domain, version)][opname]
class UnsupportedOperatorError(RuntimeError):
def __init__(self, domain, opname, version):
supported_version = get_op_supported_version(opname, domain, version)
if domain in ["", "aten", "prim", "quantized"]:
msg = f"Exporting the operator {domain}::{opname} to ONNX opset version {version} is not supported. "
if supported_version is not None:
msg += (f"Support for this operator was added in version {supported_version}, "
"try exporting with this version.")
else:
msg += "Please feel free to request support or submit a pull request on PyTorch GitHub."
else:
msg = (f"ONNX export failed on an operator with unrecognized namespace {domain}::{opname}. "
"If you are trying to export a custom operator, make sure you registered "
"it with the right domain and version.")
super().__init__(msg)