| // @lint-ignore-every CLANGTIDY HOWTOEVEN |
| #include <gtest/gtest.h> |
| #include <torch/csrc/jit/runtime/static/impl.h> |
| #include <torch/torch.h> |
| |
| #include "test_utils.h" |
| |
| using namespace caffe2; |
| using namespace torch; |
| using namespace torch::jit; |
| using namespace torch::jit::test; |
| using c10::IValue; |
| |
| TEST(StaticRuntime, autogen_sgn) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::sgn(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_acos) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::acos(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_addmv) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %mat: Tensor, %vec: Tensor, %beta: int, %alpha: int): |
| %bias: None = prim::Constant() |
| %ret = aten::addmv(%self, %mat, %vec, %beta, %alpha) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({2}); |
| auto mat0 = at::rand({2, 2}); |
| auto vec0 = at::rand({2}); |
| auto beta0 = 2; |
| auto alpha0 = 2; |
| std::vector<IValue> args{self0, mat0, vec0, beta0, alpha0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({35}); |
| auto mat1 = at::rand({35, 35}); |
| auto vec1 = at::rand({35}); |
| auto beta1 = 2; |
| auto alpha1 = 2; |
| std::vector<IValue> args2{self1, mat1, vec1, beta1, alpha1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_argmax) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int?, %keepdim: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::argmax(%self, %dim, %keepdim) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto keepdim0 = false; |
| std::vector<IValue> args{self0, dim0, keepdim0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto keepdim1 = false; |
| std::vector<IValue> args2{self1, dim1, keepdim1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_acosh) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::acosh(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({2, 2, 2}) + at::ones({2, 2, 2}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({5, 5, 5}) + at::ones({5, 5, 5}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_asinh) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::asinh(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_atanh) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::atanh(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_asin) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::asin(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_atan) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::atan(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_baddbmm) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %batch1: Tensor, %batch2: Tensor, %beta: int, %alpha: int): |
| %bias: None = prim::Constant() |
| %ret = aten::baddbmm(%self, %batch1, %batch2, %beta, %alpha) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto batch10 = at::rand({6, 6, 6}); |
| auto batch20 = at::rand({6, 6, 6}); |
| auto beta0 = 2; |
| auto alpha0 = 2; |
| std::vector<IValue> args{self0, batch10, batch20, beta0, alpha0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto batch11 = at::rand({22, 22, 22}); |
| auto batch21 = at::rand({22, 22, 22}); |
| auto beta1 = 2; |
| auto alpha1 = 2; |
| std::vector<IValue> args2{self1, batch11, batch21, beta1, alpha1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_bitwise_not) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::bitwise_not(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_copysign_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::copysign(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_ceil) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::ceil(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_cos) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::cos(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_cosh) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::cosh(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_cumprod) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %dtype: int?): |
| %bias: None = prim::Constant() |
| %ret = aten::cumprod(%self, %dim, %dtype) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto dtype0 = at::ScalarType::Float; |
| std::vector<IValue> args{self0, dim0, dtype0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto dtype1 = at::ScalarType::Float; |
| std::vector<IValue> args2{self1, dim1, dtype1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_erf) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::erf(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_erfc) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::erfc(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_exp) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::exp(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_exp2) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::exp2(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_expm1) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::expm1(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_floor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::floor(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_frac) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::frac(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_gcd) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::gcd(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_lcm) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::lcm(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_index_copy) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %source: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::index_copy(%self, %dim, %index, %source) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({2}); |
| auto dim0 = 0; |
| auto index0 = at::randint(0, 1, {2}, at::kLong); |
| auto source0 = at::rand({2}); |
| std::vector<IValue> args{self0, dim0, index0, source0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({32}); |
| auto dim1 = 0; |
| auto index1 = at::randint(0, 10, {32}, at::kLong); |
| auto source1 = at::rand({32}); |
| std::vector<IValue> args2{self1, dim1, index1, source1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_isin_Tensor_Tensor) { |
| const std::string script = R"IR( |
| graph(%elements: Tensor, %test_elements: Tensor, %assume_unique: bool, %invert: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::isin(%elements, %test_elements, %assume_unique, %invert) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto elements0 = at::rand({6, 6, 6}); |
| auto test_elements0 = at::rand({6, 6, 6}); |
| auto assume_unique0 = false; |
| auto invert0 = false; |
| std::vector<IValue> args{elements0, test_elements0, assume_unique0, invert0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto elements1 = at::rand({22, 22, 22}); |
| auto test_elements1 = at::rand({22, 22, 22}); |
| auto assume_unique1 = false; |
| auto invert1 = false; |
| std::vector<IValue> args2{elements1, test_elements1, assume_unique1, invert1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_isin_Tensor_Scalar) { |
| const std::string script = R"IR( |
| graph(%elements: Tensor, %test_element: int, %assume_unique: bool, %invert: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::isin(%elements, %test_element, %assume_unique, %invert) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto elements0 = at::rand({6, 6, 6}); |
| auto test_element0 = 2; |
| auto assume_unique0 = false; |
| auto invert0 = false; |
| std::vector<IValue> args{elements0, test_element0, assume_unique0, invert0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto elements1 = at::rand({22, 22, 22}); |
| auto test_element1 = 2; |
| auto assume_unique1 = false; |
| auto invert1 = false; |
| std::vector<IValue> args2{elements1, test_element1, assume_unique1, invert1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_isin_Scalar_Tensor) { |
| const std::string script = R"IR( |
| graph(%element: int, %test_elements: Tensor, %assume_unique: bool, %invert: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::isin(%element, %test_elements, %assume_unique, %invert) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto element0 = 2; |
| auto test_elements0 = at::rand({6, 6, 6}); |
| auto assume_unique0 = false; |
| auto invert0 = false; |
| std::vector<IValue> args{element0, test_elements0, assume_unique0, invert0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| |
| auto element1 = 2; |
| auto test_elements1 = at::rand({22, 22, 22}); |
| auto assume_unique1 = false; |
| auto invert1 = false; |
| std::vector<IValue> args2{element1, test_elements1, assume_unique1, invert1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| } |
| |
| TEST(StaticRuntime, autogen_log10) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::log10(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_log1p) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::log1p(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_log2) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::log2(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_logaddexp) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::logaddexp(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_logaddexp2) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::logaddexp2(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_xlogy_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::xlogy(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__log_softmax) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %half_to_float: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::_log_softmax(%self, %dim, %half_to_float) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto half_to_float0 = false; |
| std::vector<IValue> args{self0, dim0, half_to_float0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto half_to_float1 = false; |
| std::vector<IValue> args2{self1, dim1, half_to_float1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__log_softmax_backward_data) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %output: Tensor, %dim: int, %input_dtype: int): |
| %bias: None = prim::Constant() |
| %ret = aten::_log_softmax_backward_data(%grad_output, %output, %dim, %input_dtype) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto output0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto input_dtype0 = at::ScalarType::Float; |
| std::vector<IValue> args{grad_output0, output0, dim0, input_dtype0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto output1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto input_dtype1 = at::ScalarType::Float; |
| std::vector<IValue> args2{grad_output1, output1, dim1, input_dtype1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_mm) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %mat2: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::mm(%self, %mat2) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({8, 8}); |
| auto mat20 = at::rand({8, 8}); |
| std::vector<IValue> args{self0, mat20}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({32, 32}); |
| auto mat21 = at::rand({32, 32}); |
| std::vector<IValue> args2{self1, mat21}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_reciprocal) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::reciprocal(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_neg) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::neg(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_round) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::round(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_round_decimals) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %decimals: int): |
| %bias: None = prim::Constant() |
| %ret = aten::round(%self, %decimals) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto decimals0 = 1; |
| std::vector<IValue> args{self0, decimals0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto decimals1 = 1; |
| std::vector<IValue> args2{self1, decimals1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_gelu) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %approximate: str): |
| %bias: None = prim::Constant() |
| %ret = aten::gelu(%self, %approximate) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto approximate0 = "tanh"; |
| std::vector<IValue> args{self0, approximate0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto approximate1 = "tanh"; |
| std::vector<IValue> args2{self1, approximate1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_gelu_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %approximate: str): |
| %bias: None = prim::Constant() |
| %ret = aten::gelu_backward(%grad_output, %self, %approximate) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| auto approximate0 = "tanh"; |
| std::vector<IValue> args{grad_output0, self0, approximate0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| auto approximate1 = "tanh"; |
| std::vector<IValue> args2{grad_output1, self1, approximate1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_hardshrink) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %lambd: int): |
| %bias: None = prim::Constant() |
| %ret = aten::hardshrink(%self, %lambd) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto lambd0 = 2; |
| std::vector<IValue> args{self0, lambd0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto lambd1 = 2; |
| std::vector<IValue> args2{self1, lambd1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_hardshrink_backward) { |
| const std::string script = R"IR( |
| graph(%grad_out: Tensor, %self: Tensor, %lambd: int): |
| %bias: None = prim::Constant() |
| %ret = aten::hardshrink_backward(%grad_out, %self, %lambd) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_out0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| auto lambd0 = 2; |
| std::vector<IValue> args{grad_out0, self0, lambd0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_out1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| auto lambd1 = 2; |
| std::vector<IValue> args2{grad_out1, self1, lambd1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_rsqrt) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::rsqrt(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_silu) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::silu(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_silu_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::silu_backward(%grad_output, %self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{grad_output0, self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{grad_output1, self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_mish) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::mish(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_sin) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::sin(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_sinc) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::sinc(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_sinh) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::sinh(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__softmax) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %half_to_float: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::_softmax(%self, %dim, %half_to_float) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto half_to_float0 = false; |
| std::vector<IValue> args{self0, dim0, half_to_float0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto half_to_float1 = false; |
| std::vector<IValue> args2{self1, dim1, half_to_float1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__softmax_backward_data) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %output: Tensor, %dim: int, %input_dtype: int): |
| %bias: None = prim::Constant() |
| %ret = aten::_softmax_backward_data(%grad_output, %output, %dim, %input_dtype) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto output0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto input_dtype0 = at::ScalarType::Float; |
| std::vector<IValue> args{grad_output0, output0, dim0, input_dtype0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto output1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto input_dtype1 = at::ScalarType::Float; |
| std::vector<IValue> args2{grad_output1, output1, dim1, input_dtype1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_sqrt) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::sqrt(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_prod_dim_int) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %keepdim: bool, %dtype: int?): |
| %bias: None = prim::Constant() |
| %ret = aten::prod(%self, %dim, %keepdim, %dtype) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| auto keepdim0 = false; |
| auto dtype0 = at::ScalarType::Float; |
| std::vector<IValue> args{self0, dim0, keepdim0, dtype0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| auto keepdim1 = false; |
| auto dtype1 = at::ScalarType::Float; |
| std::vector<IValue> args2{self1, dim1, keepdim1, dtype1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_tan) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::tan(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_threshold) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %threshold: int, %value: int): |
| %bias: None = prim::Constant() |
| %ret = aten::threshold(%self, %threshold, %value) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto threshold0 = 2; |
| auto value0 = 2; |
| std::vector<IValue> args{self0, threshold0, value0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto threshold1 = 2; |
| auto value1 = 2; |
| std::vector<IValue> args2{self1, threshold1, value1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_threshold_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %threshold: int): |
| %bias: None = prim::Constant() |
| %ret = aten::threshold_backward(%grad_output, %self, %threshold) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| auto threshold0 = 2; |
| std::vector<IValue> args{grad_output0, self0, threshold0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| auto threshold1 = 2; |
| std::vector<IValue> args2{grad_output1, self1, threshold1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_trunc) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::trunc(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_heaviside) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %values: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::heaviside(%self, %values) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto values0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, values0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto values1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, values1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_index_add) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %source: Tensor, %alpha: int): |
| %bias: None = prim::Constant() |
| %ret = aten::index_add(%self, %dim, %index, %source, %alpha) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({2}); |
| auto dim0 = 0; |
| auto index0 = at::randint(0, 1, {2}, at::kInt); |
| auto source0 = at::rand({2}); |
| auto alpha0 = 2; |
| std::vector<IValue> args{self0, dim0, index0, source0, alpha0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| |
| auto self1 = at::rand({16}); |
| auto dim1 = 0; |
| auto index1 = at::randint(0, 10, {16}, at::kInt); |
| auto source1 = at::rand({16}); |
| auto alpha1 = 2; |
| std::vector<IValue> args2{self1, dim1, index1, source1, alpha1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/false); |
| } |
| |
| TEST(StaticRuntime, autogen_scatter_src) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %src: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::scatter(%self, %dim, %index, %src) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| auto dim0 = 1; |
| auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); |
| auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| std::vector<IValue> args{self0, dim0, index0, src0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| auto dim1 = 1; |
| auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); |
| auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| std::vector<IValue> args2{self1, dim1, index1, src1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_scatter_value) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %value: int): |
| %bias: None = prim::Constant() |
| %ret = aten::scatter(%self, %dim, %index, %value) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| auto dim0 = 1; |
| auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); |
| auto value0 = 2; |
| auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| std::vector<IValue> args{self0, dim0, index0, value0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| auto dim1 = 1; |
| auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); |
| auto value1 = 2; |
| auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| std::vector<IValue> args2{self1, dim1, index1, value1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_scatter_reduce) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %src: Tensor, %reduce: str): |
| %bias: None = prim::Constant() |
| %ret = aten::scatter(%self, %dim, %index, %src, %reduce) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| auto dim0 = 1; |
| auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); |
| auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| auto reduce0 = "add"; |
| std::vector<IValue> args{self0, dim0, index0, src0, reduce0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| auto dim1 = 1; |
| auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); |
| auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| auto reduce1 = "add"; |
| std::vector<IValue> args2{self1, dim1, index1, src1, reduce1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_scatter_value_reduce) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %value: int, %reduce: str): |
| %bias: None = prim::Constant() |
| %ret = aten::scatter(%self, %dim, %index, %value, %reduce) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| auto dim0 = 1; |
| auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); |
| auto value0 = 2; |
| auto reduce0 = "add"; |
| auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| std::vector<IValue> args{self0, dim0, index0, value0, reduce0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| auto dim1 = 1; |
| auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); |
| auto value1 = 2; |
| auto reduce1 = "add"; |
| auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| std::vector<IValue> args2{self1, dim1, index1, value1, reduce1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_scatter_add) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %src: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::scatter_add(%self, %dim, %index, %src) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| auto dim0 = 1; |
| auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); |
| auto src0 = at::randint(1, 100, {2, 2, 2}, torch::kInt64); |
| std::vector<IValue> args{self0, dim0, index0, src0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| auto dim1 = 1; |
| auto index1 = at::randint(0, 1, {5, 5, 5}, torch::kInt64); |
| auto src1 = at::randint(1, 100, {5, 5, 5}, torch::kInt64); |
| std::vector<IValue> args2{self1, dim1, index1, src1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_eq_Scalar) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: int): |
| %bias: None = prim::Constant() |
| %ret = aten::eq(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = 2; |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = 2; |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_eq_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::eq(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_bitwise_and_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::bitwise_and(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_bitwise_or_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::bitwise_or(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_bitwise_xor_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::bitwise_xor(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| auto other0 = at::randint(1, 100, {6, 6, 6}, at::kInt); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| auto other1 = at::randint(1, 100, {22, 22, 22}, at::kInt); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_bitwise_left_shift_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::bitwise_left_shift(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_bitwise_right_shift_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::bitwise_right_shift(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_tril) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %diagonal: int): |
| %bias: None = prim::Constant() |
| %ret = aten::tril(%self, %diagonal) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto diagonal0 = 1; |
| std::vector<IValue> args{self0, diagonal0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto diagonal1 = 1; |
| std::vector<IValue> args2{self1, diagonal1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_triu) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %diagonal: int): |
| %bias: None = prim::Constant() |
| %ret = aten::triu(%self, %diagonal) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto diagonal0 = 1; |
| std::vector<IValue> args{self0, diagonal0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto diagonal1 = 1; |
| std::vector<IValue> args2{self1, diagonal1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_digamma) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::digamma(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_lerp_Scalar) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %end: Tensor, %weight: int): |
| %bias: None = prim::Constant() |
| %ret = aten::lerp(%self, %end, %weight) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto end0 = at::rand({6, 6, 6}); |
| auto weight0 = 2; |
| std::vector<IValue> args{self0, end0, weight0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto end1 = at::rand({22, 22, 22}); |
| auto weight1 = 2; |
| std::vector<IValue> args2{self1, end1, weight1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_lerp_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %end: Tensor, %weight: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::lerp(%self, %end, %weight) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto end0 = at::rand({6, 6, 6}); |
| auto weight0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, end0, weight0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto end1 = at::rand({22, 22, 22}); |
| auto weight1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, end1, weight1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_ne_Scalar) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: int): |
| %bias: None = prim::Constant() |
| %ret = aten::ne(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = 2; |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = 2; |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_ne_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::ne(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_ge_Scalar) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: int): |
| %bias: None = prim::Constant() |
| %ret = aten::ge(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = 2; |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = 2; |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_ge_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::ge(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_le_Scalar) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: int): |
| %bias: None = prim::Constant() |
| %ret = aten::le(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = 2; |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = 2; |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_le_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::le(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_gt_Scalar) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: int): |
| %bias: None = prim::Constant() |
| %ret = aten::gt(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = 2; |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = 2; |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_gt_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::gt(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_lt_Scalar) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: int): |
| %bias: None = prim::Constant() |
| %ret = aten::lt(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = 2; |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = 2; |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_lt_Tensor) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::lt(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_gather) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int, %index: Tensor, %sparse_grad: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::gather(%self, %dim, %index, %sparse_grad) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(1, 100, {2, 2, 2}, at::kInt); |
| auto dim0 = 1; |
| auto index0 = at::randint(0, 1, {2, 2, 2}, torch::kInt64); |
| auto sparse_grad0 = false; |
| std::vector<IValue> args{self0, dim0, index0, sparse_grad0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(1, 100, {5, 5, 5}, at::kInt); |
| auto dim1 = 1; |
| auto index1 = at::randint(0, 4, {5, 5, 5}, torch::kInt64); |
| auto sparse_grad1 = false; |
| std::vector<IValue> args2{self1, dim1, index1, sparse_grad1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_addcmul) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %tensor1: Tensor, %tensor2: Tensor, %value: int): |
| %bias: None = prim::Constant() |
| %ret = aten::addcmul(%self, %tensor1, %tensor2, %value) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto tensor10 = at::rand({6, 6, 6}); |
| auto tensor20 = at::rand({6, 6, 6}); |
| auto value0 = 2; |
| std::vector<IValue> args{self0, tensor10, tensor20, value0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto tensor11 = at::rand({22, 22, 22}); |
| auto tensor21 = at::rand({22, 22, 22}); |
| auto value1 = 2; |
| std::vector<IValue> args2{self1, tensor11, tensor21, value1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_addcdiv) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %tensor1: Tensor, %tensor2: Tensor, %value: int): |
| %bias: None = prim::Constant() |
| %ret = aten::addcdiv(%self, %tensor1, %tensor2, %value) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto tensor10 = at::rand({6, 6, 6}); |
| auto tensor20 = at::rand({6, 6, 6}); |
| auto value0 = 2; |
| std::vector<IValue> args{self0, tensor10, tensor20, value0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto tensor11 = at::rand({22, 22, 22}); |
| auto tensor21 = at::rand({22, 22, 22}); |
| auto value1 = 2; |
| std::vector<IValue> args2{self1, tensor11, tensor21, value1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_lgamma) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::lgamma(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_polygamma) { |
| const std::string script = R"IR( |
| graph(%n: int, %self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::polygamma(%n, %self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto n0 = 1; |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{n0, self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto n1 = 1; |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{n1, self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_erfinv) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::erfinv(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_i0) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::i0(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_signbit) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::signbit(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_atan2) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::atan2(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_hypot) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::hypot(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_igamma) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::igamma(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_igammac) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::igammac(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_nextafter) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::nextafter(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_fmin) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::fmin(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_fmax) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::fmax(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_maximum) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::maximum(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_minimum) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::minimum(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_renorm) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %p: int, %dim: int, %maxnorm: int): |
| %bias: None = prim::Constant() |
| %ret = aten::renorm(%self, %p, %dim, %maxnorm) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto p0 = 2; |
| auto dim0 = 1; |
| auto maxnorm0 = 2; |
| std::vector<IValue> args{self0, p0, dim0, maxnorm0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto p1 = 2; |
| auto dim1 = 1; |
| auto maxnorm1 = 2; |
| std::vector<IValue> args2{self1, p1, dim1, maxnorm1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__convert_indices_from_coo_to_csr) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %size: int, %out_int32: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::_convert_indices_from_coo_to_csr(%self, %size, %out_int32) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::randint(0, 3, {2}, at::kInt); |
| auto size0 = 10; |
| auto out_int320 = false; |
| std::vector<IValue> args{self0, size0, out_int320}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::randint(0, 3, {12}, at::kInt); |
| auto size1 = 24; |
| auto out_int321 = false; |
| std::vector<IValue> args2{self1, size1, out_int321}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen__convert_indices_from_csr_to_coo) { |
| const std::string script = R"IR( |
| graph(%crow_indices: Tensor, %col_indices: Tensor, %out_int32: bool, %transpose: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::_convert_indices_from_csr_to_coo(%crow_indices, %col_indices, %out_int32, %transpose) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto crow_indices0 = torch::tensor({1}, torch::kInt32); |
| auto col_indices0 = torch::tensor({0, 1, 0}, torch::kInt32); |
| auto out_int320 = false; |
| auto transpose0 = false; |
| std::vector<IValue> args{crow_indices0, col_indices0, out_int320, transpose0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto crow_indices1 = torch::tensor({0}, torch::kInt32); |
| auto col_indices1 = |
| torch::tensor({0, 1, 0, 2, 1, 2, 0, 1, 0, 2, 1, 2}, torch::kInt32); |
| auto out_int321 = false; |
| auto transpose1 = false; |
| std::vector<IValue> args2{ |
| crow_indices1, col_indices1, out_int321, transpose1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_mse_loss) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %target: Tensor, %reduction: int): |
| %bias: None = prim::Constant() |
| %ret = aten::mse_loss(%self, %target, %reduction) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto target0 = at::rand({6, 6, 6}); |
| auto reduction0 = 1; |
| std::vector<IValue> args{self0, target0, reduction0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto target1 = at::rand({22, 22, 22}); |
| auto reduction1 = 1; |
| std::vector<IValue> args2{self1, target1, reduction1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_nll_loss_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %target: Tensor, %weight: Tensor?, %reduction: int, %ignore_index: int, %total_weight: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::nll_loss_backward(%grad_output, %self, %target, %weight, %reduction, %ignore_index, %total_weight) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({}); |
| auto self0 = at::rand({6}); |
| auto target0 = at::randint(0, 5, {6}, torch::kInt64); |
| auto weight0 = at::rand({6}); |
| auto reduction0 = 1; |
| auto ignore_index0 = 1; |
| auto total_weight0 = at::rand({}); |
| std::vector<IValue> args{ |
| grad_output0, |
| self0, |
| target0, |
| weight0, |
| reduction0, |
| ignore_index0, |
| total_weight0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({}); |
| auto self1 = at::rand({36}); |
| auto target1 = at::randint(0, 11, {36}, torch::kInt64); |
| auto weight1 = at::rand({36}); |
| auto reduction1 = 1; |
| auto ignore_index1 = 1; |
| auto total_weight1 = at::rand({}); |
| std::vector<IValue> args2{ |
| grad_output1, |
| self1, |
| target1, |
| weight1, |
| reduction1, |
| ignore_index1, |
| total_weight1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_elu) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %alpha: int, %scale: int, %input_scale: int): |
| %bias: None = prim::Constant() |
| %ret = aten::elu(%self, %alpha, %scale, %input_scale) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto alpha0 = 2; |
| auto scale0 = 2; |
| auto input_scale0 = 2; |
| std::vector<IValue> args{self0, alpha0, scale0, input_scale0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto alpha1 = 2; |
| auto scale1 = 2; |
| auto input_scale1 = 2; |
| std::vector<IValue> args2{self1, alpha1, scale1, input_scale1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_elu_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %alpha: int, %scale: int, %input_scale: int, %is_result: bool, %self_or_result: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::elu_backward(%grad_output, %alpha, %scale, %input_scale, %is_result, %self_or_result) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto alpha0 = 2; |
| auto scale0 = 2; |
| auto input_scale0 = 2; |
| auto is_result0 = false; |
| auto self_or_result0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{ |
| grad_output0, alpha0, scale0, input_scale0, is_result0, self_or_result0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto alpha1 = 2; |
| auto scale1 = 2; |
| auto input_scale1 = 2; |
| auto is_result1 = false; |
| auto self_or_result1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{ |
| grad_output1, alpha1, scale1, input_scale1, is_result1, self_or_result1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_glu) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %dim: int): |
| %bias: None = prim::Constant() |
| %ret = aten::glu(%self, %dim) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto dim0 = 1; |
| std::vector<IValue> args{self0, dim0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto dim1 = 1; |
| std::vector<IValue> args2{self1, dim1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_hardsigmoid) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::hardsigmoid(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_hardsigmoid_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::hardsigmoid_backward(%grad_output, %self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{grad_output0, self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{grad_output1, self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_leaky_relu_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %negative_slope: int, %self_is_result: bool): |
| %bias: None = prim::Constant() |
| %ret = aten::leaky_relu_backward(%grad_output, %self, %negative_slope, %self_is_result) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| auto negative_slope0 = 2; |
| auto self_is_result0 = false; |
| std::vector<IValue> args{ |
| grad_output0, self0, negative_slope0, self_is_result0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| auto negative_slope1 = 2; |
| auto self_is_result1 = false; |
| std::vector<IValue> args2{ |
| grad_output1, self1, negative_slope1, self_is_result1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_softplus) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %beta: int, %threshold: int): |
| %bias: None = prim::Constant() |
| %ret = aten::softplus(%self, %beta, %threshold) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto beta0 = 2; |
| auto threshold0 = 2; |
| std::vector<IValue> args{self0, beta0, threshold0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto beta1 = 2; |
| auto threshold1 = 2; |
| std::vector<IValue> args2{self1, beta1, threshold1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_softplus_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %beta: int, %threshold: int): |
| %bias: None = prim::Constant() |
| %ret = aten::softplus_backward(%grad_output, %self, %beta, %threshold) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| auto beta0 = 2; |
| auto threshold0 = 2; |
| std::vector<IValue> args{grad_output0, self0, beta0, threshold0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| auto beta1 = 2; |
| auto threshold1 = 2; |
| std::vector<IValue> args2{grad_output1, self1, beta1, threshold1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_softshrink) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %lambd: int): |
| %bias: None = prim::Constant() |
| %ret = aten::softshrink(%self, %lambd) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto lambd0 = 2; |
| std::vector<IValue> args{self0, lambd0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto lambd1 = 2; |
| std::vector<IValue> args2{self1, lambd1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_softshrink_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %lambd: int): |
| %bias: None = prim::Constant() |
| %ret = aten::softshrink_backward(%grad_output, %self, %lambd) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto self0 = at::rand({6, 6, 6}); |
| auto lambd0 = 2; |
| std::vector<IValue> args{grad_output0, self0, lambd0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto self1 = at::rand({22, 22, 22}); |
| auto lambd1 = 2; |
| std::vector<IValue> args2{grad_output1, self1, lambd1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_adaptive_max_pool2d_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %indices: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::adaptive_max_pool2d_backward(%grad_output, %self, %indices) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::randint(-3, 2, {2, 2, 2}); |
| auto self0 = at::randint(-3, 2, {2, 2, 2}); |
| auto indices0 = at::randint(0, 1, {2, 2, 2}, at::kLong); |
| std::vector<IValue> args{grad_output0, self0, indices0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::randint(-3, 3, {3, 3, 3}); |
| auto self1 = at::randint(-3, 2, {3, 3, 3}); |
| auto indices1 = at::randint(0, 1, {3, 3, 3}, at::kLong); |
| std::vector<IValue> args2{grad_output1, self1, indices1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_adaptive_max_pool3d_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %self: Tensor, %indices: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::adaptive_max_pool3d_backward(%grad_output, %self, %indices) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::randint(-3, 2, {2, 2, 2, 2}); |
| auto self0 = at::randint(-3, 2, {2, 2, 2, 2}); |
| auto indices0 = at::randint(0, 1, {2, 2, 2, 2}, at::kLong); |
| std::vector<IValue> args{grad_output0, self0, indices0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::randint(-3, 3, {3, 3, 3, 3}); |
| auto self1 = at::randint(-3, 2, {3, 3, 3, 3}); |
| auto indices1 = at::randint(0, 1, {3, 3, 3, 3}, at::kLong); |
| std::vector<IValue> args2{grad_output1, self1, indices1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_sigmoid_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %output: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::sigmoid_backward(%grad_output, %output) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto output0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{grad_output0, output0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto output1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{grad_output1, output1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_tanh_backward) { |
| const std::string script = R"IR( |
| graph(%grad_output: Tensor, %output: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::tanh_backward(%grad_output, %output) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto grad_output0 = at::rand({6, 6, 6}); |
| auto output0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{grad_output0, output0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto grad_output1 = at::rand({22, 22, 22}); |
| auto output1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{grad_output1, output1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_isposinf) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::isposinf(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_isneginf) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::isneginf(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_entr) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_entr(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_ndtri) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_ndtri(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_erfcx) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_erfcx(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_xlog1py) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_xlog1py(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| auto other0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| auto other1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_zeta) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_zeta(%self, %other) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({2, 2, 2}, at::kDouble) + at::ones({2, 2, 2}); |
| auto other0 = at::rand({2, 2, 2}, at::kDouble) + at::ones({2, 2, 2}); |
| std::vector<IValue> args{self0, other0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({5, 5, 5}, at::kDouble) + at::ones({5, 5, 5}); |
| auto other1 = at::rand({5, 5, 5}, at::kDouble) + at::ones({5, 5, 5}); |
| std::vector<IValue> args2{self1, other1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_i0e) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_i0e(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_i1) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_i1(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_special_i1e) { |
| const std::string script = R"IR( |
| graph(%self: Tensor): |
| %bias: None = prim::Constant() |
| %ret = aten::special_i1e(%self) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 6, 6}); |
| std::vector<IValue> args{self0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 22, 22}); |
| std::vector<IValue> args2{self1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |
| |
| TEST(StaticRuntime, autogen_linalg_cross) { |
| const std::string script = R"IR( |
| graph(%self: Tensor, %other: Tensor, %dim: int): |
| %bias: None = prim::Constant() |
| %ret = aten::linalg_cross(%self, %other, %dim) |
| %cloned = aten::clone(%ret, %bias) |
| return (%cloned) |
| )IR"; |
| |
| auto self0 = at::rand({6, 3, 6}); |
| auto other0 = at::rand({6, 3, 6}); |
| auto dim0 = 1; |
| std::vector<IValue> args{self0, other0, dim0}; |
| testStaticRuntime( |
| script, |
| args, |
| {}, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| |
| auto self1 = at::rand({22, 3, 22}); |
| auto other1 = at::rand({22, 3, 22}); |
| auto dim1 = 1; |
| std::vector<IValue> args2{self1, other1, dim1}; |
| testStaticRuntime( |
| script, |
| args, |
| args2, |
| /*use_allclose=*/false, |
| /*use_equalnan=*/false, |
| /*check_resize=*/true); |
| } |