blob: 11d146720110c67e4f88260cdfbbd30665d3bbab [file] [log] [blame]
#include "THCCachingAllocator.h"
#include <cuda_runtime_api.h>
#include <deque>
#include <map>
#include <memory>
#include <mutex>
#include <set>
#include <unordered_map>
//
// Yet another caching allocator for CUDA device allocations.
//
// - Allocations are associated with a stream. Once freed, blocks can be
// re-allocated on the same stream, but not on any other stream.
// - The allocator attempts to find the smallest cached block that will fit the
// requested size. If the block is larger than the requested size, it may be
// split. If no block is found, the allocator will delegate to cudaMalloc.
// - If the cudaMalloc fails, the allocator will free all cached blocks that
// are not split and retry the allocation.
// - Large (>1MB) and small allocation requests are handled separately. Large
// allocation requests can be filled by a cudaMalloc call of the exact size.
// Small requests will allocate and split a 1MB buffer, if necessary.
//
// With this allocator, allocations and frees should logically be considered
// "usages" of the memory segment associated with streams, just like kernel
// launches. The programmer must insert the proper synchronization if memory
// segments are used from multiple streams.
//
// The library provides a recordStream() function to help insert the correct
// synchronization when allocations are used on multiple streams. This will
// ensure that the block is not reused before each recorded stream completes
// work.
//
namespace {
typedef std::shared_ptr<THCStream> THCStreamPtr;
typedef std::set<THCStreamPtr> stream_set;
const size_t kRoundSmall = 512; // round up small allocs to 512 bytes
const size_t kRoundLarge = 131072; // round up large allocs to 128 KiB
const size_t kSmallAlloc = 1048576; // largest "small" allocation is 1 MiB
struct Block {
int device; // gpu
cudaStream_t stream; // allocation stream
stream_set stream_uses; // streams on which the block was used
size_t size; // block size in bytes
char* ptr; // memory address
bool allocated; // in-use flag
Block* prev; // prev block if split from a larger allocation
Block* next; // next block if split from a larger allocation
int event_count; // number of outstanding CUDA events
Block(int device, cudaStream_t stream, size_t size, char* ptr=NULL) :
device(device), stream(stream), stream_uses(), size(size), ptr(ptr),
allocated(0), prev(NULL), next(NULL), event_count(0) { }
};
static bool BlockComparator(const Block* a, const Block* b)
{
if (a->device != b->device) {
return a->device < b->device;
}
if (a->stream != b->stream) {
return (uintptr_t)a->stream < (uintptr_t)b->stream;
}
if (a->size != b->size) {
return a->size < b->size;
}
return (uintptr_t)a->ptr < (uintptr_t)b->ptr;
}
} // namespace
struct THCCachingAllocator
{
typedef bool (*Comparison)(const Block*, const Block*);
typedef std::set<Block*, Comparison> FreeBlocks;
// lock around all operations
std::mutex mutex;
// lock around calls to cudaFree (to prevent deadlocks with NCCL)
std::mutex cuda_free_mutex;
// cached blocks larger than 1 MB
FreeBlocks large_blocks;
// cached blocks 1 MB or smaller
FreeBlocks small_blocks;
// allocated blocks by device pointer
std::unordered_map<void*, Block*> allocated_blocks;
// outstanding cuda events
std::deque<std::pair<cudaEvent_t, Block*>> cuda_events;
THCCachingAllocator() :
large_blocks(BlockComparator),
small_blocks(BlockComparator) {}
/** allocates a block which is safe to use from the provided stream */
cudaError_t malloc(void** devPtr, size_t size, cudaStream_t stream)
{
std::lock_guard<std::mutex> lock(mutex);
int device;
cudaError_t err = cudaGetDevice(&device);
if (err != cudaSuccess) {
return err;
}
err = process_events();
if (err != cudaSuccess) {
return err;
}
size = round_size(size);
bool small = size <= kSmallAlloc;
Block search_key(device, stream, size);
auto& free_blocks = small ? large_blocks : small_blocks;
Block* block = NULL;
Block* remaining = NULL;
auto it = free_blocks.lower_bound(&search_key);
if (it != free_blocks.end() && (*it)->device == device && (*it)->stream == stream) {
block = *it;
free_blocks.erase(it);
} else {
void* ptr;
size_t alloc_size = small ? kSmallAlloc : size;
err = cuda_malloc_retry(device, &ptr, alloc_size);
if (err != cudaSuccess) {
return err;
}
block = new Block(device, stream, alloc_size, (char*)ptr);
}
if (block->size - size >= (small ? kRoundSmall : kSmallAlloc + 1)) {
remaining = block;
block = new Block(device, stream, size, block->ptr);
block->prev = remaining->prev;
if (block->prev) {
block->prev->next = block;
}
block->next = remaining;
remaining->prev = block;
remaining->ptr += size;
remaining->size -= size;
free_blocks.insert(remaining);
}
block->allocated = true;
allocated_blocks[block->ptr] = block;
*devPtr = (void*)block->ptr;
return cudaSuccess;
}
cudaError_t free(void* ptr)
{
std::lock_guard<std::mutex> lock(mutex);
if (!ptr) {
return cudaSuccess;
}
auto it = allocated_blocks.find(ptr);
if (it == allocated_blocks.end()) {
return cudaErrorInvalidDevicePointer;
}
Block* block = it->second;
allocated_blocks.erase(it);
block->allocated = false;
if (!block->stream_uses.empty()) {
return insert_events(block);
}
free_block(block);
return cudaSuccess;
}
/** returns cached blocks to the system allocator */
cudaError_t emptyCache()
{
std::lock_guard<std::mutex> lock(mutex);
cudaError_t err = free_blocks(large_blocks, large_blocks.begin(), large_blocks.end());
if (err != cudaSuccess) {
return err;
}
err = free_blocks(small_blocks, small_blocks.begin(), small_blocks.end());
if (err != cudaSuccess) {
return err;
}
return cudaSuccess;
}
void* getBaseAllocation(void* ptr, size_t* outSize)
{
std::lock_guard<std::mutex> lock(mutex);
Block* block = find_allocated_block(ptr);
if (!block) {
THError("invalid device pointer: %p", ptr);
}
while (block->prev) {
block = block->prev;
}
void *basePtr = block->ptr;
if (outSize) {
size_t size = 0;
while (block) {
size += block->size;
block = block->next;
}
*outSize = size;
}
return basePtr;
}
// Accumulates sizes of all memory blocks for given device in given free list
void cacheInfoAux(FreeBlocks& blocks, int dev_id, size_t* total, size_t* largest)
{
Block search_key(dev_id, 0, 0);
auto it = blocks.lower_bound(&search_key);
for (;it != blocks.end() && *it && (*it)->device == dev_id; ++it) {
size_t blocksize = (*it)->size;
*total += blocksize;
if (blocksize > *largest) {
*largest = blocksize;
}
}
}
void cacheInfo(int dev_id, size_t* total, size_t* largest)
{
std::lock_guard<std::mutex> lock(mutex);
cacheInfoAux(large_blocks, dev_id, total, largest);
cacheInfoAux(small_blocks, dev_id, total, largest);
}
void recordStream(void* ptr, THCStream* stream)
{
std::lock_guard<std::mutex> lock(mutex);
Block* block = find_allocated_block(ptr);
if (!block) {
THError("invalid device pointer: %p", ptr);
}
if (stream->stream == block->stream) {
// ignore uses on the allocation stream, since those don't require any
// special synchronization
return;
}
THCStream_retain(stream);
block->stream_uses.insert(THCStreamPtr(stream, &THCStream_free));
}
/** moves a block into the free block list */
void free_block(Block* block)
{
THAssert(!block->allocated && block->event_count == 0);
bool small = block->size <= kSmallAlloc;
auto& free_blocks = small ? large_blocks : small_blocks;
try_merge_blocks(block, block->prev, free_blocks);
try_merge_blocks(block, block->next, free_blocks);
free_blocks.insert(block);
}
/** combine previously split blocks */
void try_merge_blocks(Block* dst, Block* src, FreeBlocks& free_blocks)
{
if (!src || src->allocated || src->event_count > 0) {
return;
}
if (dst->prev == src) {
dst->ptr = src->ptr;
dst->prev = src->prev;
if (dst->prev) {
dst->prev->next = dst;
}
} else {
dst->next = src->next;
if (dst->next) {
dst->next->prev = dst;
}
}
dst->size += src->size;
free_blocks.erase(src);
delete src;
}
size_t round_size(size_t size)
{
if (size < kRoundSmall) {
size = kRoundSmall;
} else if (size < kSmallAlloc) {
size += kRoundSmall - 1 - (size - 1) % kRoundSmall;
} else {
size += kRoundLarge - 1 - (size - 1) % kRoundLarge;
}
return size;
}
cudaError_t cuda_malloc_retry(int device, void** devPtr, size_t size)
{
// Try cudaMalloc. If cudaMalloc fails, frees all non-split cached blocks
// and retries.
cudaError_t err = cudaMalloc(devPtr, size);
if (err != cudaSuccess) {
cudaGetLastError();
err = free_cached_blocks(device);
if (err != cudaSuccess) {
return err;
}
err = cudaMalloc(devPtr, size);
if (err != cudaSuccess) {
return err;
}
}
return cudaSuccess;
}
cudaError_t free_cached_blocks(int device)
{
// Free all non-split cached blocks on device
Block lower_bound(device, NULL, 0);
Block upper_bound(device + 1, NULL, 0);
cudaError_t err = free_blocks(
large_blocks,
large_blocks.lower_bound(&lower_bound),
large_blocks.lower_bound(&upper_bound));
if (err != cudaSuccess) {
return err;
}
err = free_blocks(
small_blocks,
small_blocks.lower_bound(&lower_bound),
small_blocks.lower_bound(&upper_bound));
return err;
}
cudaError_t free_blocks(FreeBlocks& blocks, FreeBlocks::iterator it, FreeBlocks::iterator end)
{
// Frees all non-split blocks between `it` and `end`
std::lock_guard<std::mutex> lock(cuda_free_mutex);
while (it != end) {
Block* block = *it;
if (!block->prev && !block->next) {
cudaError_t err = cudaFree((void*)block->ptr);
if (err != cudaSuccess) {
return err;
}
auto cur = it;
++it;
blocks.erase(cur);
delete block;
} else {
++it;
}
}
return cudaSuccess;
}
Block* find_allocated_block(void *ptr) {
auto it = allocated_blocks.find(ptr);
if (it == allocated_blocks.end()) {
return NULL;
}
return it->second;
}
cudaError_t insert_events(Block* block)
{
cudaError_t err;
int prev_device;
err = cudaGetDevice(&prev_device);
if (err != cudaSuccess) return err;
std::set<THCStreamPtr> streams(std::move(block->stream_uses));
THAssert(block->stream_uses.empty());
for (auto it = streams.begin(); it != streams.end(); ++it) {
auto& stream = *it;
err = cudaSetDevice(stream->device);
if (err != cudaSuccess) break;
cudaEvent_t event;
err = cudaEventCreateWithFlags(&event, cudaEventDisableTiming);
if (err != cudaSuccess) break;
err = cudaEventRecord(event, stream->stream);
if (err != cudaSuccess) break;
block->event_count++;
cuda_events.emplace_back(event, block);
}
cudaSetDevice(prev_device);
return err;
}
cudaError_t process_events()
{
// Process outstanding cudaEvents. Events that are completed are removed
// from the queue, and the 'event_count' for the corresponding allocation
// is decremented. Stops at the first event which has not been completed.
// Since events on different devices or streams may occur out of order,
// the processing of some events may be delayed.
while (!cuda_events.empty()) {
auto& e = cuda_events.front();
cudaEvent_t event = e.first;
Block* block = e.second;
cudaError_t err = cudaEventQuery(event);
if (err == cudaErrorNotReady) {
break;
} else if (err != cudaSuccess) {
return err;
}
err = cudaEventDestroy(event);
if (err != cudaSuccess) {
return err;
}
block->event_count--;
if (block->event_count == 0) {
free_block(block);
}
cuda_events.pop_front();
}
return cudaSuccess;
}
};
static cudaError_t THCCachingAllocator_malloc(void* ctx, void** ptr, size_t size, cudaStream_t stream)
{
THCCachingAllocator* a = (THCCachingAllocator*) ctx;
return a->malloc(ptr, size, stream);
}
static cudaError_t THCCachingAllocator_free(void* ctx, void* ptr)
{
THCCachingAllocator* a = (THCCachingAllocator*) ctx;
return a->free(ptr);
}
static cudaError_t THCCachingAllocator_emptyCache(void* ctx)
{
THCCachingAllocator* a = (THCCachingAllocator*) ctx;
return a->emptyCache();
}
static cudaError_t THCCachingAllocator_cacheInfo(void* ctx, int dev_id, size_t* cachedAndFree, size_t* largestBlock)
{
THCCachingAllocator* a = (THCCachingAllocator*) ctx;
a->cacheInfo(dev_id, cachedAndFree, largestBlock);
return cudaSuccess;
}
static THCCachingAllocator caching_allocator;
static THCDeviceAllocator device_allocator = {
&THCCachingAllocator_malloc,
NULL,
&THCCachingAllocator_free,
&THCCachingAllocator_emptyCache,
&THCCachingAllocator_cacheInfo,
&caching_allocator
};
THC_API THCDeviceAllocator* THCCachingAllocator_get(void)
{
return &device_allocator;
}
THC_API void* THCCachingAllocator_getBaseAllocation(void *ptr, size_t *size)
{
return caching_allocator.getBaseAllocation(ptr, size);
}
THC_API void THCCachingAllocator_recordStream(void *ptr, THCStream* stream)
{
caching_allocator.recordStream(ptr, stream);
}
THC_API std::mutex* THCCachingAllocator_getCudaFreeMutex()
{
return &caching_allocator.cuda_free_mutex;
}