blob: 2c3862e445424ce2848a0a89d8f2b44f85587d94 [file] [log] [blame]
import torch
import numpy as np
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.jit_utils import JitTestCase
import unittest
LLVM_ENABLED = torch._C._llvm_enabled()
class kernel_arena_scope(object):
def __enter__(self):
self.scope = torch._C._te.KernelScope()
def __exit__(self, typ, val, traceback):
self.scope = None
class TestTensorExprPyBind(JitTestCase):
def test_simple_sum(self):
with kernel_arena_scope():
dtype = torch._C._te.Dtype.Float
N = 32
dN = torch._C._te.ExprHandle.int(N)
A = torch._C._te.Placeholder('A', dtype, [dN])
B = torch._C._te.Placeholder('B', dtype, [dN])
def compute(i):
return A.load([i]) + B.load([i])
C = torch._C._te.Compute('C', [torch._C._te.DimArg(dN, 'i')], compute)
loopnest = torch._C._te.LoopNest([C])
loopnest.prepare_for_codegen()
stmt = torch._C._te.simplify(loopnest.root_stmt())
cg = torch._C._te.construct_codegen('ir_eval', stmt, [torch._C._te.BufferArg(x) for x in [A, B, C]])
tA = torch.rand(N) * 5
tB = torch.rand(N) * 6
tC = torch.empty(N)
cg.call([tA, tB, tC])
torch.testing.assert_allclose(tA + tB, tC)
def test_external_calls(self):
with kernel_arena_scope():
dtype = torch._C._te.Dtype.Float
ZERO = torch._C._te.ExprHandle.int(0)
ONE = torch._C._te.ExprHandle.int(1)
FOUR = torch._C._te.ExprHandle.int(4)
A = torch._C._te.BufHandle('A', [ONE, FOUR], dtype)
B = torch._C._te.BufHandle('B', [FOUR, ONE], dtype)
C = torch._C._te.BufHandle('C', [ONE, ONE], dtype)
s = torch._C._te.ExternalCall(C, "nnc_aten_matmul", [A, B], [])
loopnest = torch._C._te.LoopNest(s, [C])
loopnest.prepare_for_codegen()
codegen = torch._C._te.construct_codegen('ir_eval', s, [torch._C._te.BufferArg(x) for x in [A, B, C]])
tA = torch.ones(1, 4)
tB = torch.ones(4, 1)
tC = torch.empty(1, 1)
codegen.call([tA, tB, tC])
torch.testing.assert_allclose(torch.matmul(tA, tB), tC)
@unittest.skipIf(not LLVM_ENABLED, "LLVM backend not enabled")
def test_kernel_with_tensor_inputs(self):
def f(a, b, c):
return a + b + c
device, size = 'cpu', (4, 4)
x = torch.rand(size, device=device)
y = torch.rand(size, device=device)
z = torch.rand(size, device=device)
graph_str = """
graph(%a.1 : Float(4, 4, strides=[4, 1], requires_grad=0, device=cpu),
%b.1 : Float(4, 4, strides=[4, 1], requires_grad=0, device=cpu),
%c.1 : Float(4, 4, strides=[4, 1], requires_grad=0, device=cpu)):
%6 : int = prim::Constant[value=1]()
%7 : Float(4, 4, strides=[4, 1], requires_grad=0, device=cpu) = aten::add(%a.1, %b.1, %6)
%3 : Float(4, 4, strides=[4, 1], requires_grad=0, device=cpu) = aten::add(%7, %c.1, %6)
return (%3)
"""
graph = torch._C.parse_ir(graph_str)
with kernel_arena_scope():
kernel = torch._C._te.TensorExprKernel(graph)
res1 = kernel.run((x, y, z))
res2 = kernel.fallback((x, y, z))
correct = f(x, y, z)
np.testing.assert_allclose(res1.numpy(), correct.numpy(), atol=2e-3)
np.testing.assert_allclose(res2.numpy(), correct.numpy(), atol=2e-3)
@unittest.skipIf(not LLVM_ENABLED, "LLVM backend not enabled")
def test_kernel_with_scalar_inputs(self):
def f(a, b, c):
return a + b + c
x = torch.tensor(0.1, dtype=torch.float, device='cpu')
y = torch.tensor(0.6, dtype=torch.float, device='cpu')
z = torch.tensor(0.7, dtype=torch.float, device='cpu')
graph_str = """
graph(%a.1 : Float(requires_grad=0, device=cpu),
%b.1 : Float(requires_grad=0, device=cpu),
%c.1 : Float(requires_grad=0, device=cpu)):
%3 : int = prim::Constant[value=1]()
%6 : Float(requires_grad=0, device=cpu) = aten::add(%a.1, %b.1, %3)
%9 : Float(requires_grad=0, device=cpu) = aten::add(%6, %c.1, %3)
return (%9)
"""
graph = torch._C.parse_ir(graph_str)
with kernel_arena_scope():
kernel = torch._C._te.TensorExprKernel(graph)
res1 = kernel.run((x, y, z))
res2 = kernel.fallback((x, y, z))
correct = f(x, y, z)
np.testing.assert_allclose(res1.numpy(), correct.numpy(), atol=2e-3)
np.testing.assert_allclose(res2.numpy(), correct.numpy(), atol=2e-3)
if __name__ == '__main__':
run_tests()