blob: a137e40e840b74a567f9c1d31a74fca3b3cb9f49 [file] [log] [blame]
import torch
import numpy as np
import unittest
import math
from typing import Dict, List
import random
from functools import partial
from itertools import product, combinations, permutations
import warnings
from torch._six import inf, nan
from torch.testing._internal.common_utils import (
TestCase, run_tests, TEST_SCIPY, slowTest, torch_to_numpy_dtype_dict,
IS_WINDOWS)
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU,
onlyOnCPUAndCUDA, onlyCUDA, expectedAlertNondeterministic, largeTensorTest,
precisionOverride)
# TODO: replace with make_tensor
def _generate_input(shape, dtype, device, with_extremal):
if shape == ():
x = torch.tensor((), dtype=dtype, device=device)
else:
if dtype.is_floating_point or dtype.is_complex:
# work around torch.randn not being implemented for bfloat16
if dtype == torch.bfloat16:
x = torch.randn(*shape, device=device) * random.randint(30, 100)
x = x.to(torch.bfloat16)
else:
x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100)
x[torch.randn(*shape) > 0.5] = 0
if with_extremal and dtype.is_floating_point:
# Use extremal values
x[torch.randn(*shape) > 0.5] = float('nan')
x[torch.randn(*shape) > 0.5] = float('inf')
x[torch.randn(*shape) > 0.5] = float('-inf')
elif with_extremal and dtype.is_complex:
x[torch.randn(*shape) > 0.5] = complex('nan')
x[torch.randn(*shape) > 0.5] = complex('inf')
x[torch.randn(*shape) > 0.5] = complex('-inf')
elif dtype == torch.bool:
x = torch.zeros(shape, dtype=dtype, device=device)
x[torch.randn(*shape) > 0.5] = True
else:
x = torch.randint(15, 100, shape, dtype=dtype, device=device)
return x
# TODO: replace with make_tensor
def _rand_shape(dim, min_size, max_size):
shape = []
for i in range(dim):
shape.append(random.randint(min_size, max_size))
return tuple(shape)
class TestReductions(TestCase):
def test_var_unbiased(self, device):
tensor = torch.randn(100, device=device)
self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True))
self.assertEqual(tensor.var(), tensor.var(unbiased=True))
self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False))
tensor = torch.tensor([1.0, 2.0], device=device)
self.assertEqual(tensor.var(unbiased=True), 0.5)
self.assertEqual(tensor.var(unbiased=False), 0.25)
tensor = torch.tensor([1.0, 2.0, 3.0], device=device)
self.assertEqual(tensor.var(unbiased=True), 1.0)
self.assertEqual(tensor.var(unbiased=False), 2.0 / 3.0)
tensor = torch.randn(100, device=device)
self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True))
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False))
def test_var_stability(self, device):
tensor = torch.tensor([2281.5, 2281.25], device=device)
self.assertEqual(tensor.var(dim=0), 0.03125)
self.assertEqual(tensor.var(), 0.03125)
def test_sum_dim_reduction_uint8_overflow(self, device):
example = [[-1, 2, 1], [5, 3, 6]]
x = torch.tensor(example, dtype=torch.uint8, device=device)
self.assertEqual(x.sum(dtype=torch.uint8).item(), 16)
self.assertEqual(x.sum(0, dtype=torch.uint8), torch.tensor([4, 5, 7], dtype=torch.uint8, device=device))
self.assertEqual(x.sum(1, dtype=torch.uint8), torch.tensor([2, 14], dtype=torch.uint8, device=device))
y = torch.tensor(example, dtype=torch.uint8, device=device)
torch.sum(x, 0, out=y)
self.assertEqual(x.sum(0, dtype=torch.uint8), y)
def test_dim_reduction_less_than_64(self, device):
sizes = [1] * 65
x = torch.randn(sizes, device=device)
ops = [torch.mean, torch.sum, torch.nansum, torch.std, torch.logsumexp, torch.std, torch.var,
torch.amin, torch.amax, torch.norm]
for op in ops:
with self.assertRaisesRegex(RuntimeError, "only tensors with up to 64 dims are supported"):
op(x, 64)
with self.assertRaisesRegex(RuntimeError, "only tensors with up to 64 dims are supported"):
op(x, -1)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
def test_logsumexp(self, device):
from scipy.special import logsumexp
a = torch.randn(5, 4, device=device)
a[0, 0] = inf
a[1, :] = -inf
actual = a.logsumexp(1)
expected = logsumexp(a.cpu().numpy(), 1)
self.assertEqual(expected.shape, actual.shape)
self.assertEqual(expected, actual)
# check that out is actually inplace
b = torch.zeros(5, 2, device=device)
c = b[:, 0]
torch.logsumexp(a, 1, out=c)
self.assertEqual(expected, b[:, 0])
@onlyCPU
def test_sum_parallel(self, device):
# To use parallel branches we'll need to compare on tensors
# that are relatively large. Even if this is run on a single
# core machine these tests will still give you signal on
# the correctness
def _run_test(size):
for dim in range(len(size) + 1):
nv = np.round(np.random.rand(*size)) # 0s and 1s
tv = torch.from_numpy(nv)
# Parallelisim is only used if numel is
# larger than grainsize defined in Parallel.h
self.assertTrue(tv.numel() > 32768)
if dim == len(size):
nvs = nv.sum()
tvs = tv.sum()
else:
nvs = nv.sum(dim)
tvs = tv.sum(dim)
diff = np.abs(nvs - tvs.numpy()).sum()
self.assertEqual(diff, 0)
_run_test([2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3])
_run_test([4, 4, 4, 4, 4, 4, 4, 4, 4, 4])
_run_test([1, 32 * 8 * 32 * 8])
_run_test([1, 32770])
# TODO: kill map2_ (and similar) uses and update to compare with NumPy
# only works on CPU since this uses map2_, which is only supported on CPU
def _testCSelection(self, torchfn, mathfn):
# Two tensors
size = (100, 100)
a = torch.rand(*size)
b = torch.rand(*size)
c = torchfn(a, b)
expected_c = torch.zeros(*size)
expected_c.map2_(a, b, lambda _, a, b: mathfn(a, b))
self.assertEqual(expected_c, c, atol=0, rtol=0)
@onlyCPU
def test_max_elementwise(self, device):
self._testCSelection(torch.max, max)
@onlyCPU
def test_min_elementwise(self, device):
self._testCSelection(torch.min, min)
def test_all_any(self, device):
def test(size):
x = torch.ones(*size, device=device).byte()
self.assertTrue(x.all())
self.assertTrue(x.any())
x[3] = 0
self.assertFalse(x.all())
self.assertTrue(x.any())
x.zero_()
self.assertFalse(x.all())
self.assertFalse(x.any())
x.fill_(2)
self.assertTrue(x.all())
self.assertTrue(x.any())
x = torch.ones(*size, device=device).bool()
self.assertTrue(x.all())
self.assertTrue(x.any())
x[3] = False
self.assertFalse(x.all())
self.assertTrue(x.any())
test((10,))
test((5, 5))
def test_all_any_with_dim(self, device):
def test(x):
r1 = x.prod(dim=0, keepdim=False).byte()
r2 = x.all(dim=0, keepdim=False)
self.assertEqual(r1.shape, r2.shape)
self.assertTrue((r1 == r2).all())
r3 = x.sum(dim=1, keepdim=True).clamp(0, 1).byte()
r4 = x.any(dim=1, keepdim=True)
self.assertEqual(r3.shape, r4.shape)
self.assertTrue((r3 == r4).all())
test(torch.tensor([[0, 0, 0],
[0, 0, 1],
[0, 1, 1],
[1, 1, 1]], device=device, dtype=torch.uint8))
def test_numpy_named_args(self, device):
x1 = torch.randn(10, device=device)
x2 = torch.randn(10, device=device)
res1 = torch.add(input=x1, other=x2)
res2 = torch.add(x1=x1, x2=x2)
self.assertEqual(res1, res2)
x1 = torch.randn(10, 10, 10, device=device)
res1 = x1.sum(dim=(0, 2), keepdim=True)
res2 = x1.sum(axis=(0, 2), keepdims=True)
self.assertEqual(res1, res2)
# TODO: kill this ane replace with common creation ops
def _make_tensors(self, shape, val_range=(-100, 100), use_floating=True, use_integral=True,
use_complex=False) -> Dict[str, List[torch.Tensor]]:
float_types = [torch.double,
torch.float]
int_types = [torch.int64,
torch.int32,
torch.int16]
complex_types = [torch.complex64,
torch.complex128]
def make_contiguous(shape, dtype) -> torch.Tensor:
if dtype in float_types:
val = torch.randn(shape, dtype=dtype)
val = val * ((val_range[1] - val_range[0]) / (math.pi * 2.0))
val = val + ((val_range[1] - val_range[0]) / 2.0)
val = torch.clamp(val, min=val_range[0], max=val_range[1])
return val
result = torch.zeros(shape, dtype=dtype)
result.apply_(lambda x: random.randint(val_range[0], val_range[1]))
return result
def make_non_contiguous(shape, dtype) -> torch.Tensor:
contig = make_contiguous(shape, dtype)
non_contig = torch.empty(shape + (2, 2), dtype=dtype)[..., 0]
non_contig = non_contig.select(-1, -1)
non_contig.copy_(contig)
self.assertFalse(non_contig.is_contiguous())
return non_contig
def make_contiguous_slice(size, dtype) -> torch.Tensor:
contig = make_contiguous((1, size), dtype)
non_contig = contig[:1, 1:size - 1]
self.assertTrue(non_contig.is_contiguous())
return contig
types = []
if use_floating:
types += float_types
if use_integral:
types += int_types
if use_complex:
types += complex_types
tensors: Dict[str, List[torch.Tensor]] = {"cont": [], "noncont": [], "slice": []}
for dtype in types:
tensors["cont"].append(make_contiguous(shape, dtype))
tensors["noncont"].append(make_non_contiguous(shape, dtype))
tensors["slice"].append(make_contiguous_slice(sum(list(shape)), dtype))
return tensors
# TODO: refactor this to use comparators from common_utils
def _assert_matches_numpy(self, t, n):
self.assertEqual(n.shape, t.shape)
if t.dtype == torch.float:
self.assertEqual(n, t, rtol=1e-03, atol=1e-05, equal_nan=True)
else:
self.assertEqual(n, t, equal_nan=True)
# TODO: update this and tests that use it to use the device argument properly
def _test_dim_ops(self, pytorch_op, numpy_op,
use_floating=True, use_integral=True, use_complex=False):
def do_one(tensors_dict, dim):
for category, tensors in tensors_dict.items():
if category == "slice":
dim = 0
for tensor in tensors:
# we have no control over NumPy warnings...
with warnings.catch_warnings():
warnings.simplefilter("ignore")
expected = numpy_op(tensor.cpu().numpy(), dim)
actual = pytorch_op(tensor, dim)
self._assert_matches_numpy(actual, expected)
if torch.cuda.is_available():
self._assert_matches_numpy(pytorch_op(tensor.cuda(), dim).cpu(), expected)
do_one(self._make_tensors((5, 400000), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 1)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 0)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 1)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 2)
do_one(self._make_tensors((100000, ), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), -1)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 0)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 1)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 2)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (1, 2))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (1, -1))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (0, 2))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (0, 2, 1))
@slowTest
@onlyCPU
def test_sum_dim(self, device):
self._test_dim_ops(
lambda t, d: t.sum(d),
lambda n, d: n.sum(d),
use_floating=True, use_integral=True, use_complex=True)
@onlyCPU
def test_mean_dim(self, device):
self._test_dim_ops(
lambda t, d: t.mean(d),
lambda n, d: n.mean(d),
use_integral=False,
use_complex=True)
@onlyCPU
def test_std_dim(self, device):
for unbiased in [False, True]:
self._test_dim_ops(
lambda t, d: t.std(d, unbiased=unbiased),
lambda n, d: n.std(d, ddof=1 if unbiased else 0),
use_integral=False)
@onlyCPU
def test_var_dim(self, device):
for unbiased in [False, True]:
self._test_dim_ops(
lambda t, d: t.var(d, unbiased=unbiased),
lambda n, d: n.var(d, ddof=1 if unbiased else 0),
use_integral=False)
@onlyCPU
@unittest.skipIf(not TEST_SCIPY, 'Scipy not found')
def test_logsumexp_dim(self, device):
from scipy.special import logsumexp
self._test_dim_ops(
lambda t, d: t.logsumexp(d),
lambda n, d: logsumexp(n, d),
use_integral=False)
# TODO: update this and tests that use it to handle device properly
def _test_reduce_integer_upcast(self, fn, has_out=True, test_complex=True):
shape = (3, 4, 5)
reduced_shape = fn(torch.ones(shape)).shape
def _test_out(dtype, other_dtype):
out = torch.ones(reduced_shape, dtype=dtype)
result = fn(x, out=out)
self.assertIs(out.dtype, result.dtype)
self.assertEqual(fn(x.to(dtype)), result, exact_dtype=False)
result = fn(x, out=out, dtype=dtype)
self.assertIs(out.dtype, result.dtype)
self.assertEqual(fn(x.to(dtype)), result, exact_dtype=False)
# 'out' is favored over dtype, check error
self.assertRaises(RuntimeError, lambda: fn(x, out=out, dtype=other_dtype))
for dtype in [dtype for dtype in torch.testing.get_all_math_dtypes('cpu') if dtype != torch.float16]:
x = torch.ones(shape, dtype=dtype)
expected_dtype = dtype if dtype.is_floating_point or dtype.is_complex else torch.int64
self.assertIs(expected_dtype, fn(x).dtype)
self.assertEqual(fn(x.to(expected_dtype)), fn(x))
if dtype.is_floating_point:
other_dtype = torch.float32 if dtype == torch.float64 else torch.float64
elif dtype.is_complex:
other_dtype = torch.complex64 if dtype == torch.complex128 else torch.complex128
else:
other_dtype = torch.int32 if dtype != torch.int32 else torch.int16
self.assertIs(other_dtype, fn(x, dtype=other_dtype).dtype)
self.assertEqual(fn(x.to(other_dtype)), fn(x, dtype=other_dtype), exact_dtype=False)
# test mixed int/float/complex
if dtype.is_floating_point:
mixed_dtypes = [torch.int32, torch.complex64]
elif dtype.is_complex:
mixed_dtypes = [torch.int32, torch.float32]
else:
mixed_dtypes = [torch.float32, torch.complex64]
for mixed_dtype in mixed_dtypes:
self.assertIs(mixed_dtype, fn(x, dtype=mixed_dtype).dtype)
self.assertEqual(fn(x.to(mixed_dtype)), fn(x, dtype=mixed_dtype), exact_dtype=False)
if has_out:
_test_out(dtype, other_dtype)
_test_out(dtype, mixed_dtype)
@onlyCPU
def test_sum_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, **kwargs), False)
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, 0, **kwargs))
@onlyCPU
def test_prod_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, **kwargs), False)
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, 0, **kwargs))
@onlyCPU
def test_cumsum_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumsum(x, 0, **kwargs))
@onlyCPU
def test_cumprod_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumprod(x, 0, **kwargs))
def test_mode(self, device):
SIZE = 10
x = torch.arange(1., SIZE * SIZE + 1, device=device).clone().resize_(SIZE, SIZE)
x[:2] = 1
x[:, :2] = 1
x0 = x.clone()
# Pre-calculated results.
res1val = torch.ones(SIZE, device=device)
# The indices are the position of the last appearance of the mode element.
res1ind = torch.ones(SIZE, device=device, dtype=torch.long)
res1ind[0] = SIZE - 1
res1ind[1] = SIZE - 1
res2val, res2ind = torch.mode(x, keepdim=False)
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# Test use of result tensor
res2val = torch.tensor((), device=device)
res2ind = torch.tensor((), device=device, dtype=torch.long)
torch.mode(x, keepdim=False, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# Test non-default dim
res2val, res2ind = torch.mode(x, 0, False)
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# input unchanged
self.assertEqual(x, x0, atol=0, rtol=0)
def _test_mode_intervals(self, shape, intervals, device, v=1):
x = torch.arange(0, shape[0] * shape[1], device=device)
x[v] = x.numel()
x = x.resize_(shape)
# Set the value of each interval to the mode "v"
for (beg, end) in intervals:
x[:, beg:end] = v
values, indices = torch.mode(x, -1, False)
# Check whether the returned indices correspond to the returned values
self.assertTrue((x.gather(1, indices.unsqueeze(1)).t() == values).all())
# Check whether the returned values are the mode
self.assertTrue((values == v).all().item())
@onlyCUDA
def test_mode_large(self, device):
# i should be less than (d - 2) / 2
def testset_for_shape(shape, i):
d = shape[-1]
# Mode only in the middle.
self._test_mode_intervals(shape, [(i, d - i)], device)
# Mode in discontiguous parts of the input.
self._test_mode_intervals(shape, [(0, i), (i + 1, d - i - 1), (d - i, d)], device)
# More than one line of (65535) thread blocks
testset_for_shape((65536, 10), 3)
# Max slice size (2048)
testset_for_shape((10, 2048), 10)
# Naive kernel for big slice sizes (> 2048)
testset_for_shape((10, 4096), 10)
@onlyOnCPUAndCUDA
def test_mode_wrong_dtype(self, device):
def test_for_dtypes(x_ty, v_ty, i_ty, message):
x = torch.ones(10, device=device, dtype=x_ty)
v = torch.ones(10, device=device, dtype=v_ty)
i = torch.ones(10, device=device, dtype=i_ty)
with self.assertRaisesRegex(RuntimeError, message):
torch.mode(x, -1, True, out=(v, i))
err_msg = "expected scalar type .* but got .* for "
values_err = err_msg + "values"
indices_err = err_msg + "indices"
test_for_dtypes(torch.uint8, torch.int8, torch.long, values_err)
test_for_dtypes(torch.int8, torch.int16, torch.long, values_err)
test_for_dtypes(torch.int32, torch.float32, torch.long, values_err)
test_for_dtypes(torch.float32, torch.float64, torch.long, values_err)
test_for_dtypes(torch.uint8, torch.uint8, torch.int8, indices_err)
test_for_dtypes(torch.int8, torch.int8, torch.int16, indices_err)
test_for_dtypes(torch.int32, torch.int32, torch.float32, indices_err)
test_for_dtypes(torch.float32, torch.float32, torch.float64, indices_err)
@onlyCUDA
def test_mode_wrong_device(self, device):
# CPU Input Tensor
x = torch.ones(2)
with self.assertRaisesRegex(RuntimeError,
"expected device .* but got .* for values"):
values = torch.tensor([], device=device)
torch.mode(x, -1, True, out=(values, torch.tensor([], dtype=torch.long)))
with self.assertRaisesRegex(RuntimeError,
"expected device .* but got .* for indices"):
indices = torch.tensor([], device=device)
torch.mode(x, -1, True, out=(torch.tensor([]), indices))
# TODO: make work on CUDA, too
@onlyCPU
def test_accreal_type(self, device) -> None:
x = torch.ones(2, 3, 4)
self.assertIsInstance(x.double().sum().item(), float)
self.assertIsInstance(x.float().sum().item(), float)
self.assertIsInstance(x.long().sum().item(), int)
self.assertIsInstance(x.int().sum().item(), int)
self.assertIsInstance(x.short().sum().item(), int)
self.assertIsInstance(x.char().sum().item(), int)
self.assertIsInstance(x.byte().sum().item(), int)
def test_var_mean_some_dims(self, device):
sizes = (4, 6, 7, 5, 3)
dims = len(sizes)
x = torch.rand(sizes, device=device)
for num_of_dims in range(2, dims):
dim_list = list(combinations(list(range(dims)), r=num_of_dims))
for dim in dim_list:
for unbiased in [False, True]:
for keepdim in [False, True]:
var1, mean1 = torch.var_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
var2 = x.var(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
# TODO: this should be a generic opinfo test
def test_all_any_empty(self, device):
x = torch.ByteTensor().to(device)
self.assertTrue(x.all())
self.assertFalse(x.any())
x = torch.BoolTensor().to(device)
self.assertTrue(x.all())
self.assertFalse(x.any())
@dtypesIfCUDA(torch.half, torch.bfloat16, torch.float, torch.double)
@dtypes(torch.half, torch.bfloat16, torch.float, torch.double)
def test_max_with_inf(self, device, dtype):
a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device)
self.assertTrue(torch.all(torch.max(a, dim=1).values == inf).item())
self.assertTrue(torch.all(torch.amax(a, dim=1) == inf).item())
self.assertTrue(torch.max(a).item() == inf)
self.assertTrue(torch.amax(a).item() == inf)
@dtypesIfCUDA(torch.half, torch.bfloat16, torch.float, torch.double)
@dtypes(torch.half, torch.float, torch.bfloat16, torch.double)
def test_min_with_inf(self, device, dtype):
a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device)
self.assertTrue(torch.all(torch.min(a, dim=1).values == (-inf)).item())
self.assertTrue(torch.all(torch.amin(a, dim=1) == (-inf)).item())
self.assertTrue(torch.min(a).item() == -inf)
self.assertTrue(torch.amin(a).item() == -inf)
def _test_minmax_helper(self, torchfn, reffn, device, dtype, skip_indices=False):
def create_input(shape, device, dtype):
if dtype.is_floating_point:
return torch.randn(*shape, device=device, dtype=dtype)
else:
low = 0 if dtype == torch.bool else -1000
high = 2 if dtype == torch.bool else 1000
return torch.randint(low, high, shape, device=device, dtype=dtype)
x = create_input((100, 100), device, dtype)
self.compare_with_numpy(torchfn, reffn, x)
# non contiguous
x = create_input((10, 10, 10), device, dtype)
x = x[:, 4]
self.compare_with_numpy(torchfn, reffn, x)
def get_values(x):
if isinstance(x, tuple):
return x[0]
return x
# indices
if not skip_indices:
size = 5
x = create_input((size, size), device, dtype)
inputs = (x, x.t())
dims = (0, 1)
for xinp, d in product(inputs, dims):
self.compare_with_numpy(lambda x: get_values(torchfn(x, d, False)), lambda x: reffn(x, d, keepdims=False), xinp)
result = torchfn(xinp, d, False)
if isinstance(result, tuple):
v, i = result
if d == 1:
self.assertEqual(xinp[torch.arange(size), i], v, atol=0, rtol=0)
else:
self.assertEqual(xinp[i, torch.arange(size)], v, atol=0, rtol=0)
# nan
if dtype.is_floating_point:
for index in (0, 4, 99):
x = create_input((100,), device, dtype)
x[index] = nan
if not skip_indices:
result = torchfn(x, 0)
v = get_values(result)
self.assertEqual(v, nan)
if isinstance(result, tuple):
i = result[1]
self.assertEqual(i, index)
self.assertEqual(torchfn(x), nan)
@dtypesIfCPU(torch.float, torch.double, torch.long, torch.bool, torch.half)
@dtypesIfCUDA(torch.half, torch.float, torch.long, torch.bool)
@dtypes(torch.half, torch.float, torch.double)
def test_max(self, device, dtype):
self._test_minmax_helper(torch.max, np.amax, device, dtype)
@dtypesIfCPU(torch.float, torch.double, torch.long, torch.bool, torch.half)
@dtypesIfCUDA(torch.half, torch.float, torch.long, torch.bool)
@dtypes(torch.half, torch.float, torch.double)
def test_min(self, device, dtype):
self._test_minmax_helper(torch.min, np.amin, device, dtype)
@dtypesIfCPU(torch.half, torch.float, torch.double, torch.int, torch.long, torch.bool)
@dtypesIfCUDA(torch.half, torch.float, torch.int, torch.long, torch.bool)
@dtypes(torch.half, torch.float, torch.double)
def test_amin(self, device, dtype):
self._test_minmax_helper(torch.amin, np.amin, device, dtype)
@dtypesIfCPU(torch.half, torch.float, torch.double, torch.int, torch.long, torch.bool)
@dtypesIfCUDA(torch.half, torch.float, torch.int, torch.long, torch.bool)
@dtypes(torch.float, torch.double)
def test_amax(self, device, dtype):
self._test_minmax_helper(torch.amax, np.amax, device, dtype)
@onlyOnCPUAndCUDA
@dtypesIfCPU(torch.float, torch.double)
@dtypesIfCUDA(torch.half, torch.float)
def test_aminmax(self, device, dtype):
def _amin_wrapper(x, dim=None, keepdims=False):
if dim is None:
return torch._aminmax(x)[0]
else:
return torch._aminmax(x, dim, keepdims)[0]
def _amax_wrapper(x, dim=None, keepdims=False):
if dim is None:
return torch._aminmax(x)[1]
else:
return torch._aminmax(x, dim, keepdims)[1]
self._test_minmax_helper(_amin_wrapper, np.amin, device, dtype)
self._test_minmax_helper(_amax_wrapper, np.amax, device, dtype)
# TODO: bincount isn't a classic reduction -- maybe this test suite is
# reductions and summary ops?
def test_bincount(self, device):
# negative input throws
with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'):
torch.bincount(torch.tensor([1, -1], device=device))
# n-d input, with n > 1 throws
with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'):
torch.bincount(torch.tensor([[1, 2], [3, 4]], device=device))
# floating input type throws
with self.assertRaisesRegex(RuntimeError, 'not implemented'):
torch.bincount(torch.tensor([1., 0.3], device=device))
# minlength < 0 throws
with self.assertRaisesRegex(RuntimeError, 'minlength should be >= 0'):
torch.bincount(torch.tensor([1, 3], device=device),
torch.tensor([.2, .2], device=device),
minlength=-1)
# input and weights dim mismatch
with self.assertRaisesRegex(RuntimeError, 'same length'):
torch.bincount(torch.tensor([1, 0], device=device),
torch.tensor([1., 0.3, 0.5], device=device))
# 1-d input with no elements and default minlength
self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long)),
torch.zeros(0, dtype=torch.long, device=device))
# 1-d input with no elements and specified minlength
self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long), minlength=10),
torch.zeros(10, dtype=torch.long, device=device))
# test tensor method without weights
long_counts = torch.tensor(
[0, 3, 2, 1, 3], dtype=torch.uint8, device=device).bincount()
self.assertEqual(
torch.tensor([1, 1, 1, 2], dtype=torch.int64, device=device),
long_counts)
# test minlength functionality
int_counts = torch.bincount(
torch.tensor([1, 1, 1, 1], device=device), minlength=5)
self.assertEqual(
torch.tensor([0, 4, 0, 0, 0], dtype=torch.int64, device=device),
int_counts)
# test weights
byte_counts = torch.bincount(
torch.tensor([0, 1, 1, 1, 4], device=device),
torch.tensor([.1, .2, .3, .4, .5], device=device))
self.assertEqual(
torch.tensor([0.1, 0.9, 0, 0, 0.5], device=device), byte_counts)
byte_counts = torch.bincount(
torch.tensor([0, 1, 1, 1, 4], device=device),
torch.tensor([1, 2, 3, 4, 5], dtype=torch.int8, device=device))
self.assertEqual(
torch.tensor([1, 9, 0, 0, 5], device=device, dtype=torch.float64), byte_counts)
# test non-contiguous inputs and weights
inputs = torch.tensor([[0, 0], [3, 1], [2, 1], [1, 1], [3, 4]], device=device)
weights = torch.tensor([[.1, 1], [.2, 2], [.3, 3], [.4, 4], [.5, 5]], device=device)
for i in [0, 1]:
assert not inputs[:, i].is_contiguous(), "Inputs are supposed to be non-contiguous"
assert not weights[:, i].is_contiguous(), "Weights are supposed to be non-contiguous"
# inputs are non-contiguous but weights are contiguous
self.assertEqual(inputs[:, 0].bincount(), torch.tensor([1, 1, 1, 2]))
# inputs and weights are non-contiguous
self.assertEqual(
inputs[:, 1].bincount(weights[:, 1]),
torch.tensor([1, 9, 0, 0, 5], dtype=torch.float32))
# weights are non-contiguous but inputs are contiguous
self.assertEqual(inputs[:, 1].contiguous().bincount(weights[:, 1]),
torch.tensor([1, 9, 0, 0, 5], dtype=torch.float32))
# test bincount on non-contiguous slices
all0s = torch.zeros((32, 2), dtype=torch.int64, device=device)
self.assertEqual(all0s[:, 0].bincount(), torch.tensor([32]))
all1s = torch.ones((32, 2), dtype=torch.int64, device=device)
self.assertEqual(all1s[:, 0].bincount(), torch.tensor([0, 32]))
# test large number of bins - global memory use
big_exp = torch.zeros(10000000, device=device)
big_exp[-1] = 50.0
big_w = torch.tensor([.5] * 100, device=device)
big_out = torch.tensor([9999999] * 100, device=device).bincount(big_w)
self.assertEqual(big_exp, big_out)
# test large input size
big_exp = torch.zeros(2, device=device, dtype=torch.int64)
big_exp[1] = 1000000
big_out = torch.ones(1000000, dtype=torch.int8, device=device).bincount()
self.assertEqual(big_exp, big_out)
@onlyCUDA
@expectedAlertNondeterministic('_bincount_cuda', fn_has_device_arg=False)
def test_bincount_alert_nondeterministic(self, device):
torch.bincount(torch.tensor([], device=device, dtype=torch.long))
# TODO: how many var stability tests are there?
def test_var_stability2(self, device):
tensor = torch.FloatTensor([2281.5, 2281.25]).to(device)
# Stability for inner dim
self.assertEqual(tensor.var(0), 0.03125)
# General stability
self.assertEqual(tensor.var(), 0.03125)
# Stability for outer dimensions
tensor = tensor.unsqueeze(1)
self.assertEqual(tensor.var(0), 0.03125)
@onlyCPU
@dtypes(torch.bool, torch.double)
def test_sum_all(self, device, dtype) -> None:
def check_sum_all(tensor: torch.Tensor) -> None:
pylist = tensor.reshape(-1).tolist()
self.assertEqual(tensor.sum(), sum(pylist))
if dtype != torch.bool:
check_sum_all(torch.tensor([1, 2, 3, 4, 5], dtype=dtype, device=device))
check_sum_all(torch.randn(200000, dtype=dtype, device=device))
check_sum_all(torch.randn(2000, 2, dtype=dtype, device=device)[:, 0])
else:
check_sum_all(torch.tensor([True, False, True], dtype=torch.bool, device=device))
def _test_memory_format_transformations(self, device, input_generator_fn, transformation_fn,
memory_format, compare_data=True, default_is_preserve=False):
assert(memory_format == torch.channels_last or memory_format == torch.channels_last_3d)
# xc is a channels last tensor
xc = input_generator_fn(device)
# xc is not memory dense, but looks like channels last
if memory_format == torch.channels_last:
xc = xc[..., ::2, ::2]
else:
xc = xc[..., ::2, ::2, ::2]
clone = transformation_fn(xc, memory_format=torch.preserve_format)
self.assertFalse(clone.is_contiguous())
self.assertTrue(clone.is_contiguous(memory_format=memory_format))
self.assertFalse(xc.is_contiguous())
self.assertFalse(xc.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
xc = input_generator_fn(device)
clone = transformation_fn(xc, memory_format=torch.contiguous_format)
self.assertTrue(clone.is_contiguous())
self.assertFalse(clone.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
xc = input_generator_fn(device)
clone = transformation_fn(xc)
if default_is_preserve:
self.assertFalse(clone.is_contiguous())
self.assertTrue(clone.is_contiguous(memory_format=memory_format))
else:
self.assertTrue(clone.is_contiguous())
self.assertFalse(clone.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
x = torch.randn((3, 4, 5, 6, 7, 8, 9), device=device)
for _ in range(10):
permutation = list(range(len(x.shape)))
random.shuffle(permutation)
x = x.permute(permutation)
self.assertEqual(x.stride(), transformation_fn(x, memory_format=torch.preserve_format).stride())
@onlyCPU
@dtypes(torch.double)
def test_sum_out(self, device, dtype: torch.dtype) -> None:
x = torch.rand(100, 100, dtype=dtype, device=device)
res1 = torch.sum(x, 1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.sum(x, 1, out=res2)
self.assertEqual(res1, res2)
x = torch.rand(100, 100, 100, dtype=dtype, device=device)
res1 = x.sum(2).sum(1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.sum(x, (2, 1), out=res2)
self.assertEqual(res1, res2)
@onlyCUDA
@dtypes(torch.float16, torch.float32)
def test_prod_gpu(self, device, dtype):
x = torch.tensor([2, 3, 6, 9, 8], dtype=dtype, device=device)
# Check all combinations: fp16 input - fp16 output, fp16 input - fp32
# output, fp32 input - fp16 output, fp32 input - fp32 output
for dtype_output in [torch.float16, torch.float32]:
result_expected = torch.tensor(2592, dtype=dtype_output, device=device)
output = torch.prod(x, dtype=dtype_output)
self.assertEqual(output, result_expected)
output = x.prod(dtype=dtype_output)
self.assertEqual(output, result_expected)
@onlyCPU
@dtypes(torch.float)
def test_prod(self, device, dtype):
x = torch.rand(100, 100, dtype=dtype, device=device)
res1 = torch.prod(x, 1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.prod(x, 1, out=res2)
self.assertEqual(res1, res2)
def test_prod_bool(self, device):
vals = [[True, True], [True, False], [False, False], []]
for val in vals:
result = torch.prod(torch.tensor(val, device=device), dtype=torch.bool).item()
expect = np.prod(np.array(val), dtype=np.bool)
self.assertEqual(result, expect)
result = torch.prod(torch.tensor(val, device=device)).item()
expect = np.prod(np.array(val))
self.assertEqual(result, expect)
@onlyCPU
def test_max_mixed_devices(self, device):
a = torch.randn(10, device=device)
if torch.cuda.is_available():
values = torch.randn(10).cuda()
indices = torch.cuda.LongTensor()
self.assertRaises(RuntimeError,
lambda: torch.max(a, 0, out=(values, indices)))
self.assertRaises(RuntimeError,
lambda: torch.amax(a, 0, out=values))
@onlyCPU
def test_min_mixed_devices(self, device):
a = torch.randn(10, device=device)
if torch.cuda.is_available():
values = torch.randn(10).cuda()
indices = torch.cuda.LongTensor()
self.assertRaises(RuntimeError,
lambda: torch.min(a, 0, out=(values, indices)))
self.assertRaises(RuntimeError,
lambda: torch.amin(a, 0, out=values))
# TODO: consider refactoring with bincount test
def test_bucketization(self, device):
values_1d = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9], device=device)
values_3d = torch.tensor([[[1, 3, 5], [2, 4, 6]], [[1, 2, 3], [4, 5, 6]]], device=device)
# regular case 3d boundary and 3d input value
boundaries = torch.tensor([[[1, 2, 3, 4], [3, 4, 5, 6]], [[1, 3, 5, 7], [2, 4, 6, 8]]], device=device)
expected_result = torch.tensor([[[0, 2, 4], [0, 1, 3]], [[0, 1, 1], [1, 2, 2]]], device=device)
output = torch.empty(2, 2, 3, device=device, dtype=torch.int64)
self.assertEqual(torch.searchsorted(boundaries, values_3d), expected_result)
self.assertEqual(torch.searchsorted(boundaries, values_3d, out=output), expected_result)
expected_result = torch.tensor([[[1, 3, 4], [0, 2, 4]], [[1, 1, 2], [2, 2, 3]]], device=device)
self.assertEqual(torch.searchsorted(boundaries, values_3d, right=True), expected_result)
self.assertEqual(torch.searchsorted(boundaries, values_3d, right=True, out=output), expected_result)
# simple 1d boundary and 3d input value
boundaries = torch.tensor([1, 2, 3, 4, 5, 6], device=device)
expected_result = torch.tensor([[[0, 2, 4], [1, 3, 5]], [[0, 1, 2], [3, 4, 5]]], device=device)
output = torch.empty(2, 2, 3, device=device, dtype=torch.int64)
self.assertEqual(torch.searchsorted(boundaries, values_3d), expected_result)
self.assertEqual(torch.bucketize(values_3d, boundaries), expected_result)
self.assertEqual(torch.bucketize(values_3d, boundaries, out=output), expected_result)
expected_result = torch.tensor([[[1, 3, 5], [2, 4, 6]], [[1, 2, 3], [4, 5, 6]]], device=device)
self.assertEqual(torch.searchsorted(boundaries, values_3d, right=True), expected_result)
self.assertEqual(torch.bucketize(values_3d, boundaries, right=True), expected_result)
self.assertEqual(torch.bucketize(values_3d, boundaries, out=output, right=True), expected_result)
# simple float 1d boundary and 1d input with output int32 type
values_1d_float = values_1d.to(torch.float32)
boundaries = torch.tensor([0.9, 1, 2, 2, 3, 3, 4, 4.1, 9, 9], device=device, dtype=torch.float32)
expected_result = torch.tensor([1, 2, 4, 6, 8, 8, 8, 8, 8], device=device, dtype=torch.int32)
self.assertEqual(torch.searchsorted(boundaries, values_1d_float, out_int32=True), expected_result)
self.assertEqual(torch.bucketize(values_1d_float, boundaries, out_int32=True), expected_result)
# multiple dimension input with 0 elements
boundaries = torch.tensor([1, 2, 3, 4, 5, 6], device=device, dtype=torch.int64)
values_0_el = torch.tensor([[[]]], device=device, dtype=torch.int64)
expected_result = values_0_el.to(torch.int64)
self.assertEqual(torch.searchsorted(boundaries, values_0_el), expected_result)
self.assertEqual(torch.bucketize(values_0_el, boundaries), expected_result)
# nan input
values_nan = torch.tensor([1.0, float('nan'), 2.0, float('nan')], device=device, dtype=torch.float64)
boundaries = torch.tensor([0.0, 1.0, 2.0, 3.0], device=device, dtype=torch.float64)
expected_result = torch.tensor([1, 4, 2, 4], device=device)
self.assertEqual(torch.searchsorted(boundaries, values_nan), expected_result)
expected_result = torch.tensor([2, 4, 3, 4], device=device)
self.assertEqual(torch.searchsorted(boundaries, values_nan, right=True), expected_result)
# type promotion and non contiguous tensors
values_3d_permute = values_3d.permute(2, 1, 0).to(torch.int32)
boundaries_permute = values_3d.permute(2, 1, 0).to(torch.float64)
expected_result = torch.tensor([[[0, 0], [0, 1]], [[2, 0], [0, 1]], [[2, 0], [0, 0]]], device=device)
if self.device_type != 'xla':
self.assertWarnsRegex(
UserWarning, "tensor is non-contiguous",
lambda: self.assertEqual(torch.searchsorted(boundaries_permute, values_3d_permute), expected_result))
else:
# All tensors in XLA is contiguous even doing permute, no warning msg will be generate in XLA
self.assertEqual(torch.searchsorted(boundaries_permute, values_3d_permute), expected_result)
# scalar type
boundaries = torch.tensor([1.5, 2.5, 3.5], device=device)
expected_result = torch.tensor(1, device=device)
self.assertEqual(torch.searchsorted(boundaries, 2), expected_result)
self.assertEqual(torch.bucketize(torch.tensor(2, device=device), boundaries), expected_result)
expected_result = torch.tensor(3, device=device)
scalar_tensor_nan = torch.tensor(float('nan'), device=device)
self.assertEqual(torch.searchsorted(boundaries, scalar_tensor_nan), expected_result)
self.assertEqual(torch.bucketize(float('nan'), boundaries, right=True), expected_result)
# invalid input dimensions
boundaries = torch.tensor([[1, 2, 3], [4, 5, 6]], device=device)
with self.assertRaisesRegex(
RuntimeError, "first N-1 dimensions of boundaries tensor and input value tensor must match"):
torch.searchsorted(boundaries, values_3d)
with self.assertRaisesRegex(
RuntimeError, "boundaries tensor must be 1 dimension"):
torch.bucketize(values_3d, boundaries)
with self.assertRaisesRegex(
RuntimeError, "only when boundaries tensor dimension is 1"):
torch.searchsorted(boundaries, 1)
# incompatiable output tensor's dtype
def test_output_dtype(dtype, is_int32):
output = values_1d.to(dtype)
with self.assertRaisesRegex(
RuntimeError, "output tensor's dtype is wrong"):
torch.searchsorted(values_1d, values_1d, out=output, out_int32=is_int32)
test_output_dtype(torch.float32, False)
test_output_dtype(torch.int32, False)
test_output_dtype(torch.int64, True)
@dtypesIfCUDA(torch.half, torch.float, torch.double,
torch.int8, torch.short, torch.int, torch.long)
@dtypes(torch.float, torch.double,
torch.int8, torch.short, torch.int, torch.long)
def test_nansum(self, device, dtype):
x = (torch.randn(3, 3))
if dtype in [torch.half, torch.float, torch.double]:
x[x < 0.2] = float('nan')
# Randomly scale the values
x = (x * random.randint(10, 100)).tolist()
self.compare_with_numpy(torch.nansum, np.nansum, x, device, dtype)
def _test_reduction_function_with_numpy(self, torch_func, np_func, device, dtype,
with_extremal=False, atol=None, rtol=None,
exact_dtype=True, with_keepdim=False):
# Test 0-d to 3-d tensors.
for ndims in range(0, 4):
shape = _rand_shape(ndims, min_size=5, max_size=10)
for n in range(ndims + 1):
for c in combinations(list(range(ndims)), n):
for count_dim in permutations(c):
# Generate Input.
x = _generate_input(shape, dtype, device, with_extremal)
if count_dim == ():
# Default `dims=None` case
self.compare_with_numpy(torch_func, np_func, x, device=None, dtype=None,
atol=atol, rtol=rtol, exact_dtype=exact_dtype)
else:
# With `dims: tuple of ints` case
if with_keepdim:
torch_func_partial = partial(torch_func, keepdim=True, dim=count_dim)
np_func_partial = partial(np_func, keepdims=True, axis=count_dim)
else:
torch_func_partial = partial(torch_func, dim=count_dim)
np_func_partial = partial(np_func, axis=count_dim)
self.compare_with_numpy(torch_func_partial, np_func_partial, x, device=None, dtype=None,
atol=atol, rtol=rtol, exact_dtype=exact_dtype)
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes(include_bfloat16=False) +
torch.testing.get_all_complex_dtypes()))
def test_count_nonzero(self, device, dtype):
self._test_reduction_function_with_numpy(torch.count_nonzero, np.count_nonzero, device, dtype)
self._test_reduction_function_with_numpy(torch.count_nonzero, np.count_nonzero, device, dtype, True)
def _test_sum_reduction_vs_numpy(self, torch_fn, np_fn, device, dtype, with_keepdim=False, with_extremal=False):
def is_integral(dtype):
return dtype in torch.testing.get_all_int_dtypes()
# On Windows CI, the current version of `numpy` promotes all lower integers
# dtypes to int32 while `torch` promotes them to int64. Hence we skip on checking
# the exact dtype.
# Reference : https://dr.pytorch.org/api/view-log-full?build_id=122051580
# PR : https://github.com/pytorch/pytorch/pull/38628#issuecomment-655905370
exact_dtype = False if (IS_WINDOWS and is_integral(dtype)) else True
if dtype == torch.uint8:
with self.assertRaises(TypeError):
self._test_reduction_function_with_numpy(torch_fn, np_fn, device, dtype, with_extremal=with_extremal)
else:
# TODO: Investigate why the output is not close to numpy.
if dtype == torch.float16:
atol = 0.4
rtol = 1e-2
elif dtype == torch.float32:
atol = 7e-05
rtol = 3e-06
else:
# Default values
atol = None
rtol = None
self._test_reduction_function_with_numpy(torch_fn, np_fn, device, dtype,
atol=atol, rtol=rtol, exact_dtype=exact_dtype,
with_keepdim=with_keepdim, with_extremal=with_extremal)
@onlyOnCPUAndCUDA
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes(include_bfloat16=False)))
def test_sum_vs_numpy(self, device, dtype):
self._test_sum_reduction_vs_numpy(torch.sum, np.sum, device, dtype)
self._test_sum_reduction_vs_numpy(torch.sum, np.sum, device, dtype, with_extremal=True)
self._test_sum_reduction_vs_numpy(torch.sum, np.sum, device, dtype, with_keepdim=True)
@onlyOnCPUAndCUDA
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes(include_bfloat16=False)))
def test_nansum_vs_numpy(self, device, dtype):
self._test_sum_reduction_vs_numpy(torch.nansum, np.nansum, device, dtype)
self._test_sum_reduction_vs_numpy(torch.nansum, np.nansum, device, dtype, with_extremal=True)
self._test_sum_reduction_vs_numpy(torch.nansum, np.nansum, device, dtype, with_keepdim=True)
@dtypes(*(torch.testing.get_all_complex_dtypes()))
def test_nansum_complex(self, device, dtype):
x = torch.randn((3, 3, 3), device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, "nansum does not support complex inputs"):
torch.nansum(x)
def test_nansum_out_dtype(self, device):
dtypes = list(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes(include_bfloat16=False))
for inp_dtype, out_dtype in combinations(dtypes, 2):
shape = _rand_shape(random.randint(2, 5), min_size=5, max_size=10)
x = _generate_input(shape, inp_dtype, device, with_extremal=False)
torch_fn = partial(torch.nansum, dtype=out_dtype)
np_out_dtype = torch_to_numpy_dtype_dict[out_dtype]
np_fn = partial(np.nansum, dtype=np_out_dtype)
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes(include_bfloat16=False)))
def test_argminmax_multiple(self, device, dtype):
# Case: All Ones
t = torch.ones(3, 3, device=device, dtype=dtype)
self.compare_with_numpy(torch.argmax, np.argmax, t)
self.compare_with_numpy(torch.argmin, np.argmin, t)
# Case: With single `nan` present.
if dtype in torch.testing.get_all_fp_dtypes():
t[2, 2] = float('nan')
self.compare_with_numpy(torch.argmax, np.argmax, t)
self.compare_with_numpy(torch.argmin, np.argmin, t)
# Case: Randomly Generated Tensors
for ndims in range(1, 5):
shape = _rand_shape(ndims, min_size=5, max_size=10)
for with_extremal in [False, True]:
for contiguous in [False, True]:
# Generate Input.
x = _generate_input(shape, dtype, device, with_extremal)
if dtype == torch.half:
max_val = torch.max(x.to(torch.float))
min_val = torch.min(x.to(torch.float))
else:
max_val = torch.max(x)
min_val = torch.min(x)
mask = torch.randn(x.shape) > 0.5
x[mask] = torch.tensor(max_val + 1, dtype=dtype)
mask = torch.randn(x.shape) > 0.5
x[mask] = torch.tensor(min_val - 1, dtype=dtype)
if not contiguous:
x = x.T
self.compare_with_numpy(torch.argmax, np.argmax, x, device=None, dtype=None)
self.compare_with_numpy(torch.argmin, np.argmin, x, device=None, dtype=None)
# Verify indices returned by max and min.
if dtype != torch.half:
rand_dim = random.randint(0, ndims - 1)
self.compare_with_numpy(lambda x: torch.max(x, dim=rand_dim)[1],
lambda x: np.argmax(x, axis=rand_dim), x, device=None, dtype=None)
self.compare_with_numpy(lambda x: torch.min(x, dim=rand_dim)[1],
lambda x: np.argmin(x, axis=rand_dim), x, device=None, dtype=None)
def verify_against_numpy(t):
# Argmax
torch_fn = partial(torch.argmax, dim=1)
np_fn = partial(np.argmax, axis=1)
self.compare_with_numpy(torch_fn, np_fn, t)
# Non-contiguous input
self.compare_with_numpy(torch_fn, np_fn, t.T)
# Verify indices returned by max.
if dtype != torch.half:
self.compare_with_numpy(lambda x: torch.max(x, dim=1)[1], np_fn, x, device=None, dtype=None)
self.compare_with_numpy(lambda x: torch.max(x, dim=1)[1], np_fn, x.T, device=None, dtype=None)
# Argmin
torch_fn = partial(torch.argmin, dim=1)
np_fn = partial(np.argmin, axis=1)
self.compare_with_numpy(torch_fn, np_fn, t)
# Non-contiguous input
self.compare_with_numpy(torch_fn, np_fn, t.T)
# Verify indices returned by min.
if dtype != torch.half:
self.compare_with_numpy(lambda x: torch.min(x, dim=1)[1], np_fn, x, device=None, dtype=None)
self.compare_with_numpy(lambda x: torch.min(x, dim=1)[1], np_fn, x.T, device=None, dtype=None)
# Case: Sample from issue: https://github.com/pytorch/pytorch/issues/41998
t = torch.tensor([[1, 5],
[2, 10],
[3, 3]], device=device, dtype=dtype)
verify_against_numpy(t)
# Case: Sample from issue: https://github.com/pytorch/pytorch/issues/41998
t = torch.tensor([[1, 5],
[2, 10],
[0, 0]], device=device, dtype=dtype)
verify_against_numpy(t)
@dtypes(*(torch.testing.get_all_dtypes(include_half=True, include_bfloat16=False,
include_bool=True, include_complex=True)))
def test_all_any_vs_numpy(self, device, dtype):
# Note [all, any uint8 compatibility]: However for compatibility reason,
# for `uint8`, they return Tensor of same dtype `uint8`.
# Reference: https://github.com/pytorch/pytorch/pull/47878#issuecomment-747108561
exact_dtype = True if dtype != torch.uint8 else False
def _test_all_any(x):
self.compare_with_numpy(torch.all, np.all, x)
self.compare_with_numpy(torch.any, np.any, x)
def _test_all_any_with_dim(x, dim):
torch_fn = partial(torch.all, dim=dim)
np_fn = partial(np.all, axis=dim)
self.compare_with_numpy(torch_fn, np_fn, x, exact_dtype=exact_dtype)
torch_fn = partial(torch.any, dim=dim)
np_fn = partial(np.any, axis=dim)
self.compare_with_numpy(torch_fn, np_fn, x, exact_dtype=exact_dtype)
def _test_out_variant(x, dim):
out = torch.empty_like(x)
if dtype == torch.bool or dtype == torch.uint8:
expected = torch.all(x, dim)
torch.all(x, dim, out=out)
self.assertEqual(expected, out)
expected = torch.any(x, dim)
torch.any(x, dim, out=out)
self.assertEqual(expected, out)
else:
with self.assertRaisesRegex(RuntimeError, "all only supports bool tensor for result, got"):
torch.all(x, dim, out=out)
with self.assertRaisesRegex(RuntimeError, "any only supports bool tensor for result, got"):
torch.any(x, dim, out=out)
def _test_all_any_with_dim_keepdim(x, dim, keepdim):
torch_fn = partial(torch.all, dim=dim, keepdim=keepdim)
np_fn = partial(np.all, axis=dim, keepdims=keepdim)
self.compare_with_numpy(torch_fn, np_fn, x, exact_dtype=exact_dtype)
torch_fn = partial(torch.any, dim=dim, keepdim=keepdim)
np_fn = partial(np.any, axis=dim, keepdims=keepdim)
self.compare_with_numpy(torch_fn, np_fn, x, exact_dtype=exact_dtype)
def _test_output_dtype(x):
# This test will fail once the functions return bool output
# for uint8 input.
expected_dtype = torch.uint8 if dtype == torch.uint8 else torch.bool
self.assertEqual(torch.all(x).dtype, expected_dtype)
self.assertEqual(torch.any(x).dtype, expected_dtype)
self.assertEqual(torch.all(x, dim=0).dtype, expected_dtype)
self.assertEqual(torch.any(x, dim=0).dtype, expected_dtype)
for ndim in range(5):
shape = _rand_shape(ndim, 1, 5)
x = _generate_input(shape, dtype, device, with_extremal=False)
_test_all_any(x)
_test_all_any(x.T)
_test_all_any(x[..., ::2])
x = _generate_input(shape, dtype, device, with_extremal=True)
_test_all_any(x)
_test_all_any(x.T)
_test_all_any(x[..., ::2])
x = torch.zeros_like(x)
_test_all_any(x)
_test_all_any(x.T)
_test_all_any(x[..., ::2])
x = torch.ones_like(x)
_test_all_any(x)
_test_all_any(x.T)
_test_all_any(x[..., ::2])
_test_output_dtype(x)
for dim in range(ndim):
x = _generate_input(shape, dtype, device, with_extremal=False)
_test_all_any_with_dim(x, dim)
_test_all_any_with_dim(x.T, dim)
_test_all_any_with_dim(x[..., ::2], dim)
_test_out_variant(x, dim)
_test_all_any_with_dim_keepdim(x, dim, keepdim=True)
_test_all_any_with_dim_keepdim(x, dim, keepdim=False)
x = _generate_input(shape, dtype, device, with_extremal=True)
_test_all_any_with_dim(x, dim)
_test_all_any_with_dim(x.T, dim)
_test_all_any_with_dim(x[..., ::2], dim)
_test_out_variant(x, dim)
_test_all_any_with_dim_keepdim(x, dim, keepdim=True)
_test_all_any_with_dim_keepdim(x, dim, keepdim=False)
x = torch.zeros_like(x)
_test_all_any_with_dim(x, dim)
_test_all_any_with_dim(x.T, dim)
_test_all_any_with_dim(x[..., ::2], dim)
_test_out_variant(x, dim)
_test_all_any_with_dim_keepdim(x, dim, keepdim=True)
_test_all_any_with_dim_keepdim(x, dim, keepdim=False)
x = torch.ones_like(x)
_test_all_any_with_dim(x, dim)
_test_all_any_with_dim(x.T, dim)
_test_all_any_with_dim(x[..., ::2], dim)
_test_out_variant(x, dim)
_test_all_any_with_dim_keepdim(x, dim, keepdim=True)
_test_all_any_with_dim_keepdim(x, dim, keepdim=False)
# TODO: part of this test covers torch.norm, with should be covered by test_linalg
@onlyOnCPUAndCUDA
def test_repeated_dim(self, device):
ops = [torch.mean, torch.sum, torch.nansum, torch.std, torch.logsumexp, torch.std, torch.var,
torch.amin, torch.amax, torch.norm]
x = torch.randn(3, 3, 3, 3, device=device)
error_msg = r'appears multiple times in the list of dims'
norm_error_msg = r'Expected dims to be different, got'
for op in ops:
for dim in [(0, 0), (0, -4)]:
e_msg = norm_error_msg if op == torch.norm else error_msg
with self.assertRaisesRegex(RuntimeError, e_msg):
op(x, dim=dim)
# TODO: update this test to comapre against NumPy
@onlyCUDA
def test_var(self, device):
cpu_tensor = torch.randn(2, 3, 3)
device_tensor = cpu_tensor.to(device)
self.assertEqual(device_tensor.var(), cpu_tensor.var())
self.assertEqual(device_tensor.var(1), cpu_tensor.var(1))
self.assertEqual(device_tensor.var(2), cpu_tensor.var(2))
self.assertEqual(device_tensor.std(), cpu_tensor.std())
self.assertEqual(device_tensor.std(1), cpu_tensor.std(1))
self.assertEqual(device_tensor.var(2), cpu_tensor.var(2))
cpu_tensor = torch.randn(100)
device_tensor = cpu_tensor.to(device)
self.assertEqual(device_tensor.var(), cpu_tensor.var())
# TODO: update this test to compare against NumPy
@onlyCUDA
def test_var_large_input(self, device):
# Large, not-nice input
cpu_tensor = torch.randn(2 * 32 * 1024 + 1, 2, 67)
device_tensor = cpu_tensor.to(device)
self.assertEqual(cpu_tensor.var(2), device_tensor.var(2))
# TODO: update this to compare against NumPy instead of CPU
@onlyCUDA
@dtypes(torch.double)
def test_sum_noncontig(self, device, dtype):
x = torch.randn(1, 75, 57, 20, dtype=dtype, device=device).permute(0, 3, 1, 2)
y = x.cpu()
self.assertEqual(x.sum().cpu(), y.sum())
self.assertEqual(x.sum(dim=(-1, -2)).cpu(), y.sum(dim=(-1, -2)))
self.assertEqual(x.sum(dim=(1, 3)).cpu(), y.sum(dim=(1, 3)))
# TODO: update this to compare against NumPy instead of CPU
@onlyCUDA
def test_min_max_nan(self, device):
tests = [(lambda x: x.min(), 'min'),
(lambda x: x.max(), 'max'),
(lambda x: x.amin(), 'amin'),
(lambda x: x.amax(), 'amax'),
(lambda x: x.min(0).values, 'min_dim'),
(lambda x: x.max(0).values, 'max_dim'),
(lambda x: x.amin(0), 'amin_dim'),
(lambda x: x.amax(0), 'amax_dim')]
for f, name in tests:
a = torch.arange(25.0).view(5, 5)
a[2, 2] = nan
actual = f(a.to(device)).cpu()
expected = f(a).cpu()
self.assertEqual(torch.isnan(actual), torch.isnan(expected), msg='nans for {}'.format(name))
self.assertEqual(actual[~torch.isnan(actual)],
expected[~torch.isnan(expected)], msg='nans for {}'.format(name))
# TODO: make this test generic using OpInfos
@onlyCUDA
def test_sum_cpu_device_mismatch(self, device):
x = torch.randn(20, dtype=torch.float32, device=device)
y = torch.randn(1, dtype=torch.float32)
err_string = "Expected all tensors to be on the same device, but found at least two devices, {0}".format(device)
with self.assertRaisesRegex(RuntimeError, err_string):
torch.sum(x, dim=[0], dtype=torch.float32, out=y)
# tests half to float promotion
if self.device_type == 'cuda':
x = x.half()
with self.assertRaisesRegex(RuntimeError, err_string):
torch.sum(x, dim=[0], dtype=torch.float32, out=y)
# Assert for illegal dtype would not be raised on XLA
@onlyOnCPUAndCUDA
def test_minmax_illegal_dtype(self, device):
x = torch.randn(5, 5, dtype=torch.float32, device=device)
valid_values = torch.empty(5, dtype=torch.float32, device=device)
valid_indices = torch.empty(5, dtype=torch.long, device=device)
illegal_values = torch.empty(5, dtype=torch.int, device=device)
illegal_indices = torch.empty(5, dtype=torch.double, device=device)
torch.max(x, dim=0, out=(valid_values, valid_indices))
torch.min(x, dim=0, out=(valid_values, valid_indices))
torch.amax(x, dim=0, out=valid_values)
torch.amin(x, dim=0, out=valid_values)
rmsg = r'scalar type|dtype'
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.max(x, dim=0, out=(illegal_values, valid_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.min(x, dim=0, out=(illegal_values, valid_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.amax(x, dim=0, out=illegal_values)
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.amin(x, dim=0, out=illegal_values)
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.max(x, dim=0, out=(valid_values, illegal_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.min(x, dim=0, out=(valid_values, illegal_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.max(x, dim=0, out=(illegal_values, illegal_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.min(x, dim=0, out=(illegal_values, illegal_indices))
@dtypes(*torch.testing.get_all_dtypes(include_bool=False, include_complex=False))
def test_dim_arg_reduction_scalar(self, device, dtype):
example = 4.0
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.argmax().item(), 0)
self.assertEqual(x.argmax(dim=None).item(), 0)
self.assertEqual(x.argmax(dim=0).item(), 0)
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.tensor(0, dtype=torch.int64))
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.argmin().item(), 0)
self.assertEqual(x.argmin(dim=None).item(), 0)
self.assertEqual(x.argmin(dim=0).item(), 0)
self.assertEqual(x.argmin(dim=0, keepdim=True), torch.tensor(0, dtype=torch.int64))
@precisionOverride({torch.float16: 1e-2, torch.bfloat16: 1e-2})
@dtypes(*(set(torch.testing.get_all_dtypes(include_bool=False, include_complex=False)) - {torch.uint8}))
def test_dim_reduction(self, device, dtype):
example = [[-1, 2, 1], [5, 3, 6]]
sum_dtype = {
torch.bfloat16: torch.bfloat16,
torch.double: torch.double,
torch.float: torch.float,
torch.half: torch.half,
torch.int64: torch.int64,
torch.int32: torch.int64,
torch.int16: torch.int64,
torch.int8: torch.int64
}
# This won't test for 256bit instructions, since we usually
# only work on 1 cacheline (512bit) at a time and these
# examples aren't big enough to trigger that.
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.sum().item(), 16)
self.assertEqual(x.sum(0), torch.tensor([4, 5, 7], dtype=sum_dtype[dtype]))
self.assertEqual(x.sum(1), torch.tensor([2, 14], dtype=sum_dtype[dtype]))
y = torch.tensor(example, device=device, dtype=sum_dtype[dtype])
torch.sum(x, 0, out=y)
self.assertEqual(x.sum(0), y)
# Mean not supported for Int types
if dtype in [torch.float16, torch.bfloat16, torch.float32, torch.float64]:
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.mean().item(), 16.0 / 6)
self.assertEqual(x.mean(0), torch.tensor([2.0, 2.5, 7.0 / 2], dtype=dtype))
self.assertEqual(x.mean(1), torch.tensor([2.0 / 3, 14.0 / 3], dtype=dtype))
self.assertEqual(x.mean(), x.mean((0, 1)))
prod_dtype = {
torch.bfloat16: torch.bfloat16,
torch.double: torch.double,
torch.float: torch.float,
torch.float16: torch.float16,
torch.int64: torch.int64,
torch.int32: torch.int64,
torch.int16: torch.int64,
torch.int8: torch.int64,
}
# prod is not supported for float16 & bfloat16 on CPU
if not (self.device_type == 'cpu' and dtype in [torch.float16, torch.bfloat16]):
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.prod().item(), -180)
self.assertEqual(x.prod(0), torch.tensor([-5, 6, 6], dtype=prod_dtype[dtype]))
self.assertEqual(x.prod(1), torch.tensor([-2, 90], dtype=prod_dtype[dtype]))
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.min().item(), -1)
self.assertEqual(x.argmin().item(), 0)
# TODO: torch.min does not support the same operation as argmin
# for the same case, should we enable it?
self.assertEqual(x.argmin(dim=None).item(), 0)
self.assertEqual(x.min(0), (torch.tensor([-1, 2, 1], dtype=dtype),
torch.tensor([0, 0, 0], dtype=torch.int64)))
self.assertEqual(x.amin(0), torch.tensor([-1, 2, 1], dtype=dtype))
self.assertEqual(x.argmin(0), torch.tensor([0, 0, 0], dtype=torch.int64))
self.assertEqual(x.min(dim=0, keepdim=True), (torch.tensor([[-1, 2, 1]], dtype=dtype),
torch.tensor([[0, 0, 0]], dtype=torch.int64)))
self.assertEqual(x.amin(dim=0, keepdim=True), torch.tensor([[-1, 2, 1]], dtype=dtype))
self.assertEqual(x.argmin(dim=0, keepdim=True), torch.tensor([[0, 0, 0]], dtype=torch.int64))
self.assertEqual(x.min(1), (torch.tensor([-1, 3], dtype=dtype),
torch.tensor([0, 1], dtype=torch.int64)))
self.assertEqual(x.amin(1), torch.tensor([-1, 3], dtype=dtype))
self.assertEqual(x.argmin(1), torch.tensor([0, 1], dtype=torch.int64))
self.assertEqual(x.min(dim=1, keepdim=True), (torch.tensor([[-1], [3]], dtype=dtype),
torch.tensor([[0], [1]], dtype=torch.int64)))
self.assertEqual(x.amin(dim=1, keepdim=True), torch.tensor([[-1], [3]], dtype=dtype))
self.assertEqual(x.argmin(dim=1, keepdim=True), torch.tensor([[0], [1]], dtype=torch.int64))
# test that non-contiguous tensors work
self.assertEqual(x[:, :2].min().item(), -1)
self.assertEqual(x[:, :2].amin().item(), -1)
self.assertEqual(x[:, :2].argmin().item(), 0)
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.max().item(), 6)
self.assertEqual(x.amax().item(), 6)
self.assertEqual(x.argmax().item(), 5)
self.assertEqual(x.max(0), (torch.tensor([5, 3, 6], dtype=dtype),
torch.tensor([1, 1, 1], dtype=torch.int64)))
self.assertEqual(x.amax(0), torch.tensor([5, 3, 6], dtype=dtype))
self.assertEqual(x.argmax(dim=0), torch.tensor([1, 1, 1], dtype=torch.int64))
self.assertEqual(x.max(dim=0, keepdim=True), (torch.tensor([[5, 3, 6]], dtype=dtype),
torch.tensor([[1, 1, 1]], dtype=torch.int64)))
self.assertEqual(x.amax(dim=0, keepdim=True), torch.tensor([[5, 3, 6]], dtype=dtype))
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.tensor([[1, 1, 1]], dtype=torch.int64))
self.assertEqual(x.max(1), (torch.tensor([2, 6], dtype=dtype),
torch.tensor([1, 2], dtype=torch.int64)))
self.assertEqual(x.amax(1), torch.tensor([2, 6], dtype=dtype))
self.assertEqual(x.argmax(dim=1), torch.tensor([1, 2], dtype=torch.int64))
self.assertEqual(x.max(1, keepdim=True), (torch.tensor([[2], [6]], dtype=dtype),
torch.tensor([[1], [2]], dtype=torch.int64)))
self.assertEqual(x.amax(1, keepdim=True), torch.tensor([[2], [6]], dtype=dtype))
self.assertEqual(x.argmax(dim=1, keepdim=True), torch.tensor([[1], [2]], dtype=torch.int64))
# test that non-contiguous tensors work
self.assertEqual(x[:, :2].max().item(), 5)
self.assertEqual(x[:, :2].amax().item(), 5)
self.assertEqual(x[:, :2].argmax().item(), 2)
dim_red_fns = [
"mean", "median", "nanmedian", "mode", "norm", "prod",
"std", "sum", "var", "max", "min", "amax", "amin"]
def normfn_attr(t, dim, keepdim=False, out=None):
attr = torch.norm
return attr(t, 2, dim, keepdim, out=out)
for fn_name in dim_red_fns:
fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr
def fn(x, dim, keepdim=False, out=None):
ans = fn_attr(x, dim, keepdim=keepdim, out=out)
return ans if not isinstance(ans, tuple) else ans[0]
def fn_tuple(x, dim, keepdim=False, out=None):
return fn_attr(x, dim, keepdim=keepdim, out=out)
def test_multidim(x, dim):
self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True))
self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension())
self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())
# general case
x = torch.randn(3, 4, 5, device=device)
dim = random.randint(0, 2)
test_multidim(x, dim)
# check 1-d behavior
x = torch.randn(1, device=device)
dim = 0
self.assertEqual(fn(x, dim).shape, ())
self.assertEqual(fn(x, dim, keepdim=True).shape, (1,))
# check reducing of a singleton dimension
dims = [3, 4, 5]
singleton_dim = random.randint(0, 2)
dims[singleton_dim] = 1
x = torch.randn(dims, device=device)
test_multidim(x, singleton_dim)
# check reducing with output kwargs
if fn_name in ['median', 'nanmedian', 'mode', 'max', 'min']:
y = torch.randn(5, 3, device=device)
values = torch.randn(5, 3, device=device)
indices = torch.zeros(5, 3, device=device).long() - 1
fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1]))
values_expected, indices_expected = fn_tuple(y, 1, keepdim=False)
self.assertEqual(values[:, 1], values_expected,
msg='{} values with out= kwarg'.format(fn_name))
self.assertEqual(indices[:, 1], indices_expected,
msg='{} indices with out= kwarg'.format(fn_name))
continue
x = torch.randn(5, 3, device=device)
y = torch.randn(5, 3, device=device)
fn(y, 1, keepdim=False, out=x[:, 1])
expected = fn(y, 1, keepdim=False)
self.assertEqual(x[:, 1], expected, msg='{} with out= kwarg'.format(fn_name))
@onlyCUDA
@largeTensorTest('10GB')
def test_reduction_split(self, device):
# Test reduction when there is a 32bit-indexing split
# https://github.com/pytorch/pytorch/issues/37583
input_ = torch.randn(5, 14400, 14400, device=device)
result = input_.sum(dim=0)
expect = input_[0] + input_[1] + input_[2] + input_[3] + input_[4]
self.assertEqual(result, expect)
@onlyCUDA
@dtypes(torch.half, torch.float, torch.double, torch.bfloat16)
def test_reduction_vectorize_along_input_corner(self, device, dtype):
# 1D case: sum
size = 1024 * 1024 * 64 + 3
shift = 1
x = torch.zeros(size, dtype=dtype, device=device)
y = x[shift:]
for i in range(100):
x.zero_()
x[i] = 1
self.assertEqual(x.sum(), 1.0)
if i < shift:
self.assertEqual(y.sum(), 0.0)
else:
self.assertEqual(y.sum(), 1.0)
for i in range(1, 100):
x.zero_()
x[-i] = 1
self.assertEqual(x.sum(), 1.0)
self.assertEqual(y.sum(), 1.0)
# 1D case: argmax
size = 1024 * 1024 * 64 + 3
shift = 1
ysize = size - shift
x = torch.zeros(size, dtype=dtype, device=device)
y = x[shift:]
for i in range(100):
x.zero_()
x[i] = 1
self.assertEqual(x.argmax().item(), i)
if i >= shift:
self.assertEqual(y.argmax().item(), i - shift)
for i in range(1, 100):
x.zero_()
x[-i] = 1
self.assertEqual(x.argmax().item(), size - i)
self.assertEqual(y.argmax().item(), ysize - i)
# 2D case: sum
size = (7, 1024 * 1024 + 3)
x = torch.zeros(size, dtype=dtype, device=device)
for i in range(100):
x.zero_()
for j in range(7):
x[j][i] = j
xs = x.sum(dim=-1)
for j in range(7):
self.assertEqual(xs[j].item(), float(j))
for i in range(100):
x.zero_()
for j in range(7):
x[j][-i] = j
xs = x.sum(dim=-1)
for j in range(7):
self.assertEqual(xs[j].item(), float(j))
# 2D case: max/argmax
size = (7, 1024 * 1024 + 3)
x = torch.zeros(size, dtype=dtype, device=device)
for i in range(100):
x.zero_()
for j in range(7):
x[j][i] = j + 1
xs1 = x.argmax(dim=-1)
xs2 = x.max(dim=-1).indices
for j in range(7):
self.assertEqual(xs1[j].item(), i)
self.assertEqual(xs2[j].item(), i)
for i in range(1, 100):
x.zero_()
for j in range(7):
x[j][-i] = j + 1
xs1 = x.argmax(dim=-1)
xs2 = x.max(dim=-1).indices
for j in range(7):
self.assertEqual(xs1[j].item(), size[1] - i)
self.assertEqual(xs2[j].item(), size[1] - i)
# 2D case: min/argmin
size = (7, 1024 * 1024 + 3)
x = torch.zeros(size, dtype=dtype, device=device)
for i in range(100):
x.zero_()
for j in range(7):
x[j][i] = -(j + 1)
xs1 = x.argmin(dim=-1)
xs2 = x.min(dim=-1).indices
for j in range(7):
self.assertEqual(xs1[j].item(), i)
self.assertEqual(xs2[j].item(), i)
for i in range(1, 100):
x.zero_()
for j in range(7):
x[j][-i] = -(j + 1)
xs1 = x.argmin(dim=-1)
xs2 = x.min(dim=-1).indices
for j in range(7):
self.assertEqual(xs1[j].item(), size[1] - i)
self.assertEqual(xs2[j].item(), size[1] - i)
@onlyCUDA
@dtypes(torch.half, torch.float, torch.double, torch.bfloat16)
def test_reduction_vectorize_along_output(self, device, dtype):
def run_test(input_):
M, N = input_.shape
input_.zero_()
for i in range(min(M, N)):
input_[i][i] = 1
output1 = input_.argmax(dim=0)
output2 = input_.sum(dim=0)
for i in range(min(M, N)):
self.assertEqual(output1[i], i)
self.assertEqual(output2[i], 1)
# vec 4
run_test(torch.zeros(64, 64, dtype=dtype, device=device))
# vec 2
run_test(torch.zeros(64 * 64 + 2, dtype=dtype, device=device)[2:].view(64, 64))
run_test(torch.zeros(64, 62, dtype=dtype, device=device))
run_test(torch.zeros(64, 2, dtype=dtype, device=device))
# vec 1
run_test(torch.zeros(64 * 64 + 1, dtype=dtype, device=device)[1:].view(64, 64))
run_test(torch.zeros(64, 61, dtype=dtype, device=device))
run_test(torch.zeros(64, 1, dtype=dtype, device=device))
@slowTest
def test_argminmax_large_axis(self, device):
# Regression test for gh-32863
x = torch.zeros(2**31, device=device, dtype=torch.int8)
x[-1] = 1
self.assertEqual(x.argmax(0), x.shape[0] - 1)
self.assertEqual(x.max(0).indices, x.shape[0] - 1)
x[-1] = -1
self.assertEqual(x.argmin(0), x.shape[0] - 1)
self.assertEqual(x.min(0).indices, x.shape[0] - 1)
def test_argminmax_axis_with_dim_one(self, device):
# See: https://github.com/pytorch/pytorch/issues/38922
n = 32768
x = torch.zeros(1, n)
self.assertEqual(x.argmax(dim=0), torch.zeros(n, dtype=torch.int64))
self.assertEqual(x.argmin(dim=0), torch.zeros(n, dtype=torch.int64))
self.assertEqual(x.argmax(dim=-2), torch.zeros(n, dtype=torch.int64))
self.assertEqual(x.argmin(dim=-2), torch.zeros(n, dtype=torch.int64))
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
self.assertEqual(x.argmin(dim=0, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
self.assertEqual(x.argmax(dim=-2, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
self.assertEqual(x.argmin(dim=-2, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
@dtypes(torch.int, torch.long, torch.float, torch.double)
@dtypesIfCUDA(torch.int, torch.long, torch.half, torch.float, torch.double)
def test_median_real_values(self, device, dtype):
# Generate random 0-3D sizes
sizes = [random.sample(range(1, 32), i) for i in range(4) for _ in range(2)]
for size in sizes:
# Create random input tensor
t = torch.randn(size, device=device).type(dtype)
t_numpy = t.cpu().numpy()
res = t.median()
self.assertEqual(res, t.nanmedian())
k = int((t.numel() - 1) / 2)
self.assertEqual(res, t.view(-1).sort()[0][k])
if t.numel() % 2 == 1:
# We can only test agains numpy for odd reductions because numpy
# returns the mean of the two medians and torch returns the lower
self.assertEqual(res.cpu().numpy(), np.median(t_numpy))
for dim in range(t.ndim):
res = t.median(dim, True)
self.assertEqual(res, t.nanmedian(dim, True))
size = t.size(dim) if t.ndim > 0 else 1
k = int((size - 1) / 2)
self.assertEqual(res[0], (t.sort(dim)[0]).select(dim, k).unsqueeze_(dim))
self.assertEqual(res[0], t.gather(dim, res[1]))
if size % 2 == 1:
# We can only test agains numpy for odd reductions because numpy
# returns the mean of the two medians and torch returns the lower
self.assertEqual(res[0].cpu().numpy(), np.median(t_numpy, dim, keepdims=True))
@dtypes(torch.float, torch.double)
@dtypesIfCUDA(torch.half, torch.float, torch.double)
def test_median_nan_values(self, device, dtype):
# Generate random 0-3D sizes
sizes = [random.sample(range(1, 32), i) for i in range(4) for _ in range(2)]
for size in sizes:
# Create random input tensor with nan values
t = torch.rand(size, device=device, dtype=dtype)
t.masked_fill_(t < 0.1, float('nan'))
t_numpy = t.cpu().numpy()
for op in [torch.median, torch.nanmedian]:
numpy_op = np.median if op == torch.median else np.nanmedian
res = op(t)
num_nan = t.isnan().sum()
if op == torch.median and num_nan > 0:
k = t.numel() - 1
else:
k = int((t.numel() - num_nan - 1) / 2)
self.assertEqual(res, t.view(-1).sort()[0][k])
if (t.numel() - num_nan) % 2 == 1:
# We can only test agains numpy for odd reductions because numpy
# returns the mean of the two medians and torch returns the lower
self.assertEqual(res.item(), numpy_op(t.cpu().numpy()))
for dim in range(t.ndim):
res = op(t, dim, True)
size = t.size(dim) if t.ndim > 0 else 1
num_nan = t.isnan().sum(dim, True)
if op == torch.median:
k = torch.where(num_nan > 0, size - 1, int((size - 1) / 2))
else:
k = ((size - num_nan - 1) / 2).type(torch.long)
self.assertEqual(res[0], (t.sort(dim)[0]).gather(dim, k))
self.assertEqual(res[0], t.gather(dim, res[1]))
# We can only test agains numpy for odd reductions because numpy
# returns the mean of the two medians and torch returns the lower
mask = (size - num_nan) % 2 == 1
res = res[0].masked_select(mask).cpu()
ref = numpy_op(t_numpy, dim, keepdims=True)[mask.cpu().numpy()]
self.assertEqual(res, torch.from_numpy(ref))
def test_median_corner_cases(self, device):
def check(op, a, args, key):
t = torch.tensor(a, device=device)
res = op(t, *args)
if not args:
key = torch.tensor(key, device=device)
else:
if len(key) == 1:
key = torch.tensor(key[0], device=device)
res = res[0]
else:
key = (torch.tensor(key[0], device=device), torch.tensor(key[1], device=device))
self.assertEqual(res, key)
nan = float('nan')
check(torch.median, nan, [], nan)
check(torch.nanmedian, nan, [], nan)
check(torch.median, nan, [0], [nan, 0])
check(torch.nanmedian, nan, [0], [nan, 0])
check(torch.median, [nan], [0, True], [[nan], [0]])
check(torch.nanmedian, [nan], [0, True], [[nan], [0]])
check(torch.median, [nan], [0, True], [[nan], [0]])
check(torch.nanmedian, [nan], [0, True], [[nan], [0]])
# Indices are not deterministic here so can only check values
check(torch.median, [[nan, nan], [1, 2]], [0], [[nan, nan]])
check(torch.nanmedian, [[nan, nan], [1, 2]], [0], [[1, 2.]])
check(torch.median, [[nan, nan], [1, 2]], [1], [[nan, 1]])
check(torch.nanmedian, [[nan, nan], [1, 2]], [1], [[nan, 1.]])
# Discontiguous and strided tensors
a = torch.arange(12, device=device)
self.assertEqual(a[::2].median(), torch.tensor(4, device=device))
self.assertEqual(a[::2].nanmedian(), torch.tensor(4, device=device))
a.resize_(3, 4)
self.assertEqual(a.T.median(), torch.tensor(5, device=device))
self.assertEqual(a.T.nanmedian(), torch.tensor(5, device=device))
self.assertEqual(a[::2, ::2].median(-1)[0], torch.tensor([0, 8], device=device))
self.assertEqual(a[::2, ::2].nanmedian(-1)[0], torch.tensor([0, 8], device=device))
a.resize_(2, 3, 2)
self.assertEqual(a.T.median(), torch.tensor(5, device=device))
self.assertEqual(a.T.nanmedian(), torch.tensor(5, device=device))
self.assertEqual(a[:, ::2, :].median(-1)[0], torch.tensor([[0, 4], [6, 10]], device=device))
self.assertEqual(a[:, ::2, :].nanmedian(-1)[0], torch.tensor([[0, 4], [6, 10]], device=device))
@onlyOnCPUAndCUDA
@dtypes(torch.float, torch.double)
def test_quantile(self, device, dtype):
# Generate some random test cases
ops = ['quantile', 'nanquantile']
inputs = [tuple(np.random.randint(2, 10, size=i)) for i in range(1, 4)]
quantiles = [tuple(np.random.rand(i)) for i in range(0, 5)]
keepdims = [True, False]
# Add corner cases
inputs.extend([0.75, (1,), (1, 1), (1, 2, 1)])
inputs.extend([[float('nan')], [[float('nan'), float('nan')], [1, 2]]])
inputs.extend([[[float('nan'), float('nan')], [float('nan'), 2]]])
quantiles.extend([0.5, [0., 1.], np.random.rand(10)])
# Enumerate all input combinations
for op, x, q, keepdim in product(ops, inputs, quantiles, keepdims):
if type(x) is tuple:
a = torch.randn(x, dtype=dtype, device=device)
# Make some random elements NaN
a.masked_fill_(torch.randint_like(a, 20) == 0, float('nan'))
else:
a = torch.tensor(x, dtype=dtype, device=device)
q = torch.tensor(q, dtype=dtype, device=device)
torch_op = getattr(torch, op)
numpy_op = getattr(np, op)
# Compute quantile along every dimension and flattened tensor
interpolations = ('linear', 'lower', 'higher', 'midpoint', 'nearest')
for interpolation, dim in product(interpolations,
[None] + list(range(a.ndim))):
result = torch_op(a, q, dim=dim, keepdim=keepdim, interpolation=interpolation)
expected = numpy_op(a.cpu().numpy(), q.cpu().numpy(), dim,
interpolation=interpolation, keepdims=keepdim)
self.assertEqual(result.cpu(), torch.from_numpy(np.array(expected)).type(result.type()))
# Test out variation
out = torch.empty_like(result)
torch_op(a, q, dim=dim, keepdim=keepdim, interpolation=interpolation, out=out)
self.assertEqual(out.cpu(), result.cpu())
def test_quantile_backward(self, device):
def check(a, q, dim, expected_grad, ops=(torch.quantile, torch.nanquantile)):
for op in ops:
t = torch.tensor(a, device=device, requires_grad=True)
op(t, torch.tensor(q, device=device), dim).sum().backward()
self.assertEqual(t.grad, expected_grad)
check([1., 2, 3], 0.5, 0, [0, 1, 0])
check([1., 2, 3, 4], 0.5, 0, [0, 0.5, 0.5, 0])
check([3., 1, 4, 2], 0.5, 0, [0.5, 0, 0, 0.5])
check([1., 2, 3, 4], [0.25, 0.5, 0.75], 0, [0.25, 1.25, 1.25, 0.25])
check([[1., 2], [2, 1]], 0., 0, [[1, 0], [0, 1]])
check([[1., 2], [4, 3]], 1., 1, [[0, 1], [1, 0]])
check([1, float('nan'), 2], 0.5, 0, [0, 1, 0], [torch.quantile])
check([1, float('nan'), 2], 0.5, 0, [0.5, 0, 0.5], [torch.nanquantile])
def test_quantile_error(self, device):
def check(a, q, args, kwargs, message):
with self.assertRaisesRegex(RuntimeError, r'quantile\(\) ' + message):
at = torch.tensor(a, device=device)
qt = torch.tensor(q, device=device) if isinstance(q, list) else q
torch.quantile(at, qt, *args, **kwargs)
check([], 0.5, [], {}, r'input tensor must be non-empty')
check([1.], [[1.]], [], {}, r'q must be a scalar or 1D tensor')
check([1], 0.5, [], {}, r'input tensor must be either float or double dtype')
check([1.], [1], [], {}, r'q tensor must be same dtype as the input tensor')
check([1.], -1., [], {}, r'q must be in the range \[0, 1\] but got -1')
check([1.], 1.1, [], {}, r'q must be in the range \[0, 1\] but got 1.1')
check([1.], 0.5, [], {'out': torch.empty([], dtype=torch.int32, device=device)},
r'out tensor must be same dtype as the input tensor')
check([1.], [1.], [None, False], {'interpolation': 'random_mode'},
r"interpolation must be one of linear, lower, higher, midpoint or nearest, but got random_mode")
if self.device_type == "cpu":
check([1.], [0.5, 1.1, -1], [], {}, r'q values must be in the range \[0, 1\]')
if self.device_type == "cuda":
with self.assertRaisesRegex(
RuntimeError, r'quantile\(\) q tensor must be on the same device as the input tensor'):
torch.randn(1, device=device).quantile(torch.tensor(0.5))
with self.assertRaisesRegex(
RuntimeError, r'quantile\(\) out tensor must be on the same device as the input tensor'):
torch.quantile(torch.randn(1, device=device), 0.5, out=torch.scalar_tensor(1))
def test_std_mean(self, device):
x = torch.rand(100, 50, 20, device=device)
for dim in range(x.dim()):
for unbiased in [False, True]:
for keepdim in [False, True]:
std1, mean1 = torch.std_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
std2 = x.std(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(std1, std2)
self.assertEqual(mean1, mean2)
def test_std_mean_all_dims(self, device):
x = torch.rand(100, 50, 20, device=device)
for unbiased in [False, True]:
std1, mean1 = torch.std_mean(x, unbiased=unbiased)
std2 = x.std(unbiased=unbiased)
mean2 = x.mean()
self.assertEqual(std1, std2)
self.assertEqual(mean1, mean2)
def test_var_mean(self, device):
x = torch.rand(100, 300, 50, device=device)
for dim in range(x.dim()):
for unbiased in [False, True]:
for keepdim in [False, True]:
var1, mean1 = torch.var_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
var2 = x.var(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
def test_var_mean_all_dims(self, device):
x = torch.rand(100, 50, 20, device=device)
for unbiased in [False, True]:
var1, mean1 = torch.var_mean(x, unbiased=unbiased)
var2 = x.var(unbiased=unbiased)
mean2 = x.mean()
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
def test_std_mean_some_dims(self, device):
sizes = (4, 6, 7, 5, 3)
dims = len(sizes)
x = torch.rand(sizes, device=device)
for num_of_dims in range(2, dims):
dim_list = list(combinations(list(range(dims)), r=num_of_dims))
for dim in dim_list:
for unbiased in [False, True]:
for keepdim in [False, True]:
std1, mean1 = torch.std_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
std2 = x.std(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(std1, std2)
self.assertEqual(mean1, mean2)
def _compare_std_var_with_numpy(self, op, device, dtype, input, dim,
keepdim, unbiased, use_out):
a = input.cpu().numpy() if input.dtype is not torch.bfloat16 else input.float().cpu().numpy()
numpy_kwargs = {
'axis' : dim,
'keepdims' : keepdim,
'ddof' : 1 if unbiased else 0,
}
if dim is None:
del numpy_kwargs['axis']
del numpy_kwargs['keepdims']
if op == 'var':
torch_op = torch.var
numpy_op = np.var
elif op == 'std':
torch_op = torch.std
numpy_op = np.std
else:
self.fail("Unknown op!")
numpy_result = numpy_op(a, **numpy_kwargs)
if dim is None and use_out is False:
torch_result = torch_op(input, unbiased)
elif dim is not None and use_out is False:
torch_result = torch_op(input, dim, unbiased, keepdim)
elif dim is not None and use_out is True:
out = torch.empty(0, device=device, dtype=dtype)
torch_result = torch_op(input, dim, unbiased, keepdim, out=out)
else:
out = torch.empty(0, device=device, dtype=dtype)
try:
torch_result = torch_op(input, dim, unbiased, keepdim, out=out)
except RuntimeError:
return
self.fail("Failed to hit RuntimeError!")
self.assertEqual(torch_result, numpy_result, exact_dtype=False)
@dtypesIfCUDA(torch.float, torch.double, torch.cfloat, torch.cdouble)
@dtypes(torch.float, torch.double)
def test_var_vs_numpy(self, device, dtype):
_size = (20, 20)
for test_case in product((torch.randn(_size, device=device, dtype=dtype),),
(None, 0, 1),
(False, True),
(False, True),
(False, True),):
self._compare_std_var_with_numpy('var', device, dtype, *test_case)
@dtypesIfCUDA(torch.float, torch.double, torch.cfloat, torch.cdouble)
@dtypes(torch.float, torch.double)
def test_std_vs_numpy(self, device, dtype):
_size = (20, 20)
for test_case in product((torch.randn(_size, device=device, dtype=dtype),),
(None, 0, 1),
(False, True),
(False, True),
(False, True),):
self._compare_std_var_with_numpy('std', device, dtype, *test_case)
def test_amin_amax_some_dims(self, device):
sizes = (4, 6, 7, 5, 3)
dims = len(sizes)
x = torch.rand(sizes, device=device)
for num_of_dims in range(2, dims):
dim_list = list(combinations(list(range(dims)), r=num_of_dims))
for dim in dim_list:
for keepdim in [False, True]:
amin1 = torch.amin(x, dim=dim, keepdim=keepdim)
amax1 = torch.amax(x, dim=dim, keepdim=keepdim)
amin2 = x
amax2 = x
for i, d in enumerate(dim):
if not keepdim:
d -= i
amin2 = torch.amin(amin2, dim=d, keepdim=keepdim)
amax2 = torch.amax(amax2, dim=d, keepdim=keepdim)
self.assertEqual(amin1, amin2)
self.assertEqual(amax1, amax2)
@onlyCUDA
@expectedAlertNondeterministic('_histc_cuda', fn_has_device_arg=False)
def test_histc_alert_nondeterministic(self, device):
torch.histc(torch.tensor([], device=device), min=0, max=3)
def test_histc(self, device):
# negative nbins throws
with self.assertRaisesRegex(RuntimeError, 'bins must be > 0'):
torch.histc(torch.tensor([1], dtype=torch.float, device=device), bins=-1)
# empty tensor
actual = torch.histc(torch.tensor([], device=device), min=0, max=3)
expected = torch.zeros(100, dtype=torch.float, device=device)
self.assertEqual(expected, actual)
# without nbins
actual = torch.histc(
torch.tensor([2, 5], dtype=torch.float, device=device))
expected = torch.zeros(100, dtype=torch.float, device=device)
expected[0] = 1
expected[99] = 1
self.assertEqual(expected, actual)
# tensor with the same element
actual = torch.histc(torch.ones(5, dtype=torch.float, device=device), bins=5)
self.assertEqual(
torch.tensor([0, 0, 5, 0, 0], dtype=torch.float, device=device),
actual)
# no element falls between [min, max]
actual = torch.histc(
torch.ones(5, dtype=torch.float, device=device), bins=5, min=2, max=3)
self.assertEqual(
torch.tensor([0, 0, 0, 0, 0], dtype=torch.float, device=device),
actual)
# element falls below min + integral bin size and
actual = torch.histc(
torch.tensor([2, 4, 2, 2, 5, 4], dtype=torch.float, device=device),
bins=5, min=1, max=5)
self.assertEqual(
torch.tensor([0, 3, 0, 2, 1], dtype=torch.float, device=device),
actual)
# non-integral bin size
actual = torch.histc(
torch.tensor([1, 2, 1], dtype=torch.float, device=device),
bins=4, min=0, max=3)
self.assertEqual(
torch.tensor([0, 2, 1, 0], dtype=torch.float, device=device),
actual)
# double input
actual = torch.histc(
torch.tensor([1, 2, 1], dtype=torch.double, device=device), bins=4, min=0, max=3)
self.assertEqual(
torch.tensor([0, 2, 1, 0], dtype=torch.double, device=device),
actual)
self.assertEqual(actual.dtype, torch.double)
# mixed input
actual = torch.histc(
torch.tensor([1., 2, 1], dtype=torch.float, device=device),
bins=4, min=0, max=3)
self.assertEqual(
torch.tensor([0, 2, 1, 0], dtype=torch.float, device=device),
actual)
self.assertEqual(actual.dtype, torch.float)
# scalar input and 1 bin -- should return a 1-dimensional tensor, not a scalar.
actual = torch.histc(
torch.tensor(0, dtype=torch.float, device=device),
bins=1, min=0, max=3)
self.assertEqual(
torch.tensor([1], dtype=torch.float, device=device),
actual)
# tensors with inf; min, max not provided -- should throw a RuntimeError
with self.assertRaisesRegex(RuntimeError, r'range of \[inf, inf\] is not finite'):
torch.histc(torch.tensor([float("inf")], dtype=torch.float, device=device))
with self.assertRaisesRegex(RuntimeError, r'range of \[1, inf\] is not finite'):
torch.histc(torch.tensor([1., 2., float("inf")], dtype=torch.float, device=device))
# tensors with inf; min, max provided
self.assertEqual(
torch.histc(torch.tensor([float("inf")], dtype=torch.float, device=device),
bins=1, min=0, max=3),
torch.tensor([0], dtype=torch.float, device=device))
self.assertEqual(
torch.histc(torch.tensor([1., 2., float("inf")], dtype=torch.float, device=device),
bins=4, max=3),
torch.tensor([0, 1, 1, 0], dtype=torch.float, device=device))
# tensor with nan -- should throw a RuntimeError
with self.assertRaisesRegex(RuntimeError, r'range of \[nan, nan\] is not finite'):
torch.histc(torch.tensor([float("nan")], dtype=torch.float, device=device))
# tensors with min > max -- should throw a RuntimeError
with self.assertRaisesRegex(RuntimeError, "max must be larger than min"):
torch.histc(torch.tensor([1., 2., 3.], dtype=torch.float, device=device),
bins=4, min=5, max=1)
# test against numpy.histogram()
def test_against_np(tensor, bins=100, min=0, max=0):
if min == 0 and max == 0:
min = tensor.min().item()
max = tensor.max().item()
nparr = tensor.cpu().numpy()
actual = torch.histc(tensor, bins=bins, min=min, max=max)
expected = torch.from_numpy(np.histogram(nparr, bins=bins, range=(min, max))[0])
actual_cpu = actual.cpu()
# NB: Numpy returns a int64 tensor, like normal people...
self.assertEqual(actual, expected.to(actual_cpu))
test_against_np(torch.tensor([1., 2, 1], device=device))
test_against_np(torch.randn(5000, device=device))
# Test bins arg
test_against_np(torch.randn(301, device=device), bins=10)
# Test truncated range
test_against_np(torch.randn(201, device=device), min=0.1, max=1)
noncontig = torch.randn(100, 3, device=device)[:, 2]
test_against_np(noncontig)
multidim = torch.randn(3, 5, 7, 2, device=device)
test_against_np(multidim)
expanded = torch.randn(1, 5, 1, 2, device=device).expand(3, 5, 7, 2)
test_against_np(expanded)
def test_reduction_empty(self, device):
fns_to_test = [
# name, function, identity
('max', torch.max, None),
('amax', torch.amax, None),
('argmax', torch.argmax, None),
('min', torch.min, None),
('amin', torch.amin, None),
('argmin', torch.argmin, None),
('mode', torch.mode, None),
('kthvalue', lambda *args, **kwargs: torch.kthvalue(*args, k=1, **kwargs), None),
('prod', torch.prod, 1.),
('sum', torch.sum, 0.),
('norm', torch.norm, 0.),
('mean', torch.mean, nan),
('var', torch.var, nan),
('std', torch.std, nan),
('logsumexp', torch.logsumexp, -inf),
]
shape = (2, 0, 4)
x = torch.randn(shape, device=device)
for fn in [torch.max, torch.min]:
ident_err = 'operation does not have an identity'
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x))
# median and nanmedian have been updated to follow the new convention for empty tensors
# where it should only fail if the dimension being reduced has size 0.
for name, fn in [('median', torch.median), ('nanmedian', torch.nanmedian)]:
ident_err = 'does not have an identity'
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=1))
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=1, keepdim=True))
self.assertEqual(fn(x, dim=0)[0].shape, (shape[1], shape[2]))
self.assertEqual(fn(x, dim=0, keepdim=True)[0].shape, (1, shape[1], shape[2]))
self.assertEqual(fn(x, dim=2)[0].shape, (shape[0], shape[1]))
self.assertEqual(fn(x, dim=2, keepdim=True)[0].shape, (shape[0], shape[1], 1))
for item in fns_to_test:
name, fn, identity = item
if identity is None:
ident_err = 'does not have an identity'
# Reductions over non-zero dimensions should work even for empty tensors
# See https://github.com/pytorch/pytorch/issues/34907 for a discussion on this.
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=2))
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=2, keepdim=True))
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=1))
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=1, keepdim=True))
else:
self.assertEqual(torch.empty((2, 0), device=device), fn(x, dim=2))
self.assertEqual(torch.empty((2, 0, 1), device=device), fn(x, dim=2, keepdim=True))
# assertEqual doesn't work with inf, -inf, nan and two tensors.
check = (torch.testing.assert_allclose if math.isnan(identity) or math.isinf(identity) else
self.assertEqual)
check(torch.full((2, 4), identity, device=device), fn(x, dim=1))
check(torch.full((2, 1, 4), identity, device=device), fn(x, dim=1, keepdim=True))
try:
check(torch.full((), identity, device=device), fn(x))
except TypeError as err:
# ignore if there is no allreduce.
self.assertTrue('dim' in str(err))
for dtype in torch.testing.get_all_dtypes(include_half=True, include_bfloat16=False,
include_bool=True, include_complex=True):
# Refer: [all, any uint8 compatibility]
if dtype == torch.uint8:
out_dtype = torch.uint8
else:
out_dtype = torch.bool # output of all/any is bool irrespective of input dtype
# any
xb = x.to(dtype)
yb = x.to(dtype)
self.assertEqual((2, 0), xb.any(2).shape)
self.assertEqual((2, 0, 1), xb.any(2, keepdim=True).shape)
self.assertEqual(torch.zeros((2, 4), device=device, dtype=out_dtype), xb.any(1))
self.assertEqual(torch.zeros((2, 1, 4), device=device, dtype=out_dtype), xb.any(1, keepdim=True))
self.assertEqual(torch.zeros((), device=device, dtype=out_dtype), xb.any())
# all
self.assertEqual((2, 0), xb.all(2).shape)
self.assertEqual((2, 0, 1), xb.all(2, keepdim=True).shape)
self.assertEqual(torch.ones((2, 4), device=device, dtype=out_dtype), xb.all(1))
self.assertEqual(torch.ones((2, 1, 4), device=device, dtype=out_dtype), xb.all(1, keepdim=True))
self.assertEqual(torch.ones((), device=device, dtype=out_dtype), xb.all())
instantiate_device_type_tests(TestReductions, globals())
if __name__ == '__main__':
run_tests()