| # Owner(s): ["module: fx"] |
| |
| import copy |
| import unittest |
| from collections import defaultdict |
| |
| import torch |
| import torch.fx as fx |
| from torch._dynamo.source import LocalSource |
| from torch.fx.experimental.shape_inference.infer_shape import infer_shape |
| from torch.fx.experimental.shape_inference.infer_symbol_values import ( |
| infer_symbol_values, |
| ) |
| from torch.fx.experimental.symbolic_shapes import DimDynamic, ShapeEnv |
| |
| |
| class TestShapeInference(unittest.TestCase): |
| def test_infer_symbol_values(self): |
| def mksym(shape_env, value, source, dynamic_dim) -> None: |
| return shape_env.create_symintnode( |
| shape_env.create_symbol( |
| value, |
| source=source, |
| dynamic_dim=dynamic_dim, |
| ), |
| hint=value, |
| source=source, |
| ) |
| |
| shape_env = ShapeEnv() |
| N = 8 |
| sample = {f"s{i}": 2 for i in range(N)} |
| init_symints = [ |
| mksym(shape_env, v, LocalSource(k), DimDynamic.DYNAMIC) |
| for k, v in sample.items() |
| ] |
| symints = copy.deepcopy(init_symints) |
| symbol_to_idx_dict = {f"s{i}": i for i in range(N)} |
| padding_constraints = defaultdict(list) |
| |
| # prepare constraints strings |
| constraints = [] |
| constraints.append( |
| "The size of tensor a (s1) must match the size of tensor b (1773) at non-singleton dimension 1)" |
| ) |
| constraints.append( |
| "Expected size for first two dimensions of batch2 tensor to be: [s0, (s2//2) + 12] but got: [s0, 120]." |
| ) |
| constraints.append("shape '[s0, -1, 32]' is invalid for input of size s0*s3") |
| constraints.append( |
| "a and b must have same reduction dim, but got [32*s0, s3] X [20, 15]." |
| ) |
| constraints.append( |
| "a and b must have same reduction dim, but got [s0, s4 + 1568] X [5728, 1024]." |
| ) |
| constraints.append( |
| "Expected size for first two dimensions of batch2 tensor to be: [s0, 40] but got: [s0, s5]." |
| ) |
| constraints.append( |
| "shape '[s0, -1, 32]' is invalid for input of size s0*s6 + 1344*s0" |
| ) |
| constraints.append( |
| "shape '[-1, 47]' is invalid for input of size 32*s0*s6 + 1344*s0" |
| ) |
| constraints.append( |
| "Expected size for first two dimensions of batch2 tensor to be: [s0, 47*s6] but got: [s0*s6, 47]." |
| ) |
| constraints.append("Split sizes add up to 4258 but got the tensor's size of s7") |
| |
| for constraint in constraints: |
| infer_symbol_values( |
| symints, |
| init_symints, |
| symbol_to_idx_dict, |
| padding_constraints, |
| constraint, |
| ) |
| |
| self.assertEqual(symints[1], 1773) |
| self.assertEqual(symints[2], 216) |
| self.assertEqual(symints[3], 640) |
| self.assertEqual(symints[4], 4160) |
| self.assertEqual(symints[5], 40) |
| self.assertEqual(symints[6], 160) |
| self.assertEqual(symints[7], 4258) |
| |
| def test_infer_shape(self): |
| class TestModule(torch.nn.Module): |
| def __init__(self) -> None: |
| super().__init__() |
| self.w_1 = torch.empty([256, 328]) |
| self.b_1 = torch.empty([256]) |
| self.w_2 = torch.empty([328, 256]) |
| self.b_2 = torch.empty([328]) |
| |
| def forward(self, x): |
| l_1 = torch.nn.functional.linear(x, self.w_1, bias=self.b_1) |
| s_1 = torch.sigmoid(l_1) |
| l_2 = torch.nn.functional.linear(s_1, self.w_2, bias=self.b_2) |
| t_1 = torch.tanh(l_2) |
| return t_1 |
| |
| def generate_graph_module(model): |
| gm = fx.symbolic_trace(model) |
| return gm |
| |
| m = TestModule() |
| gm = generate_graph_module(m) |
| input_tensors = [torch.randn(1, 1)] |
| infer_shape(gm, input_tensors) |