blob: 092f68e7d5b63b02d8a06a4a7586bce57e03ced5 [file] [log] [blame]
#pragma once
#include <ATen/core/List.h>
#include <ATen/native/ConvUtils.h>
namespace at::native::quantized {
namespace {
// MakeConvOutputShape used from both CPU and CUDA libraries
// and exporting symbol from torch_cpu would probaby take more storage
// than duplicating implementation which likely be inlined away
template <int kSpatialDim>
at::SmallVector<int64_t, kSpatialDim + 2> MakeConvOutputShape(
int N, // mini-batch
int M, // output channels
const std::array<int64_t, kSpatialDim>& input_image_shape,
const std::vector<int64_t>& kernel,
const torch::List<int64_t>& stride,
const torch::List<int64_t>& padding,
const torch::List<int64_t>& dilation);
#if defined(USE_CUDA) || defined(USE_PYTORCH_QNNPACK)
template <>
at::SmallVector<int64_t, 4> MakeConvOutputShape<2>(
int N, // mini-batch
int M, // output channels
const std::array<int64_t, 2>& input_image_shape,
const std::vector<int64_t>& kernel,
const at::List<int64_t>& stride,
const at::List<int64_t>& padding,
const at::List<int64_t>& dilation) {
const int H = input_image_shape[0];
const int W = input_image_shape[1];
const int64_t Y_H =
(H + 2 * padding[0] - dilation[0] * (kernel[0] - 1) - 1) / stride[0] + 1;
const int64_t Y_W =
(W + 2 * padding[1] - dilation[1] * (kernel[1] - 1) - 1) / stride[1] + 1;
return {N, M, Y_H, Y_W};
}
template <>
at::SmallVector<int64_t, 5> MakeConvOutputShape<3>(
int N, // mini-batch
int M, // output channels
const std::array<int64_t, 3>& input_image_shape,
const std::vector<int64_t>& kernel,
const at::List<int64_t>& stride,
const at::List<int64_t>& padding,
const torch::List<int64_t>& dilation) {
const int D = input_image_shape[0];
const int H = input_image_shape[1];
const int W = input_image_shape[2];
const int64_t Y_D =
(D + 2 * padding[0] - dilation[0] * (kernel[0] - 1) - 1) / stride[0] + 1;
const int64_t Y_H =
(H + 2 * padding[1] - dilation[1] * (kernel[1] - 1) - 1) / stride[1] + 1;
const int64_t Y_W =
(W + 2 * padding[2] - dilation[2] * (kernel[2] - 1) - 1) / stride[2] + 1;
return {N, M, Y_D, Y_H, Y_W};
}
#endif
} // anonymous namespace
} // namespace at::native::quantized