blob: 9cdf6dcb52aac938c102baa71cdbc5a319a36718 [file] [log] [blame]
#ifndef NO_PYTHON
#include <Python.h>
#endif
#include "interpreter.h"
#include "torch/csrc/autograd/edge.h"
#include "torch/csrc/autograd/function.h"
#include "torch/csrc/autograd/functions/special.h"
#include "torch/csrc/autograd/profiler.h"
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/jit/fusion_compiler.h"
#include "torch/csrc/jit/generated/aten_dispatch.h"
#include "torch/csrc/jit/graph_executor.h"
#include "torch/csrc/jit/ir.h"
#include "torch/csrc/jit/tensor_conversions.h"
#include <typeinfo>
#ifndef NO_PYTHON
#include "torch/csrc/autograd/python_engine.h"
#include "torch/csrc/autograd/python_variable.h"
#include "torch/csrc/jit/pybind.h"
#include "torch/csrc/utils/auto_gil.h"
namespace py = pybind11;
#endif
namespace torch { namespace jit {
// Before we translate to intepreter instructions, we do
// some preprocessing of the graph to turn it into a form that is closer
// to what the instructions will look like.
// In particular we:
// * (TODO) desugar Loop trip counts into c = 0, c += 1 instructions in the loop
// * flatten stages so that each stage starts with a load from the stack
// and ends with a store to the stack
// *. computes move_flags (see Outputs), and inserts
// * Drop nodes are inserted for any node that is unused to create a dummy use
// that will cause the interpreter to free the node.
// A drop node is just a node with no outputs that just pops its inputs off the stack,
// to ensure the interpreter release references to nodes that are never used.
// Drop nodes are also inserted when the last use of a node is in some conditionally
// run control flow (e.g. one side of an If) and the interpreter must free
// the node only after the control flow has reconverged
// Outputs are:
// * graph - the post processed copy of g
// * move_flags[n] - a list of booleans, one for each input,
// indicating whether this is the last use of the value. The interpreter
// should generate a move rather than a copy in this case.
// * stage_input_types: the type annotations on the inputs to each stage
// these can be removed once the the backward tracer is no longer used
namespace {
// new_cond = (i < max_trip_count) && cond
Value* createTripCountConjunctiveCondition(
Graph* g,
Value* cur_trip_count,
Value* max_trip_count,
Value* cond) {
// Emit initial comparison -- initial_trip_count < max_trip_count
Value* initial_comparison_value =
g->insertNode(g->create(aten::lt, {cur_trip_count, max_trip_count}, 1))
->output();
// Replace initial condition with logical `and` of trip count and
// initial condition
Value* new_cond =
g->insertNode(
g->create(aten::__and__, {initial_comparison_value, cond}, 1))
->output();
return new_cond;
}
} // namespace
// this currently just _removes_ the trip count inputs and checks they are
// unused. In the future they will be desugared into normal arithmetic to
// provide a loop counter
void desugarTripCounts(Block * b) {
for(auto n : b->nodes()) {
if(n->kind() == prim::Loop) {
auto g = n->owningGraph();
auto body_block = n->blocks()[0];
Value* block_trip_count_input = body_block->inputs()[0];
// Treat loop iteration number as a loop-carried dependency. We emit an
// increment at the end of the body block.
n->insertOutput(0);
Value* max_trip_count_value = n->input(0);
{
WithInsertPoint guard(n);
// int i = 0
Value* initial_trip_count =
g->insertNode(g->createConstant(at::zeros(at::CPU(at::kLong), {1})))
->output();
// Set up initial iteration number value for loop-carried dependency
n->removeInput(0);
// Input 0 is now initial termination condition, insert this after that.
// LCD's start at index 1.
n->insertInput(1, initial_trip_count);
Value* new_cond = createTripCountConjunctiveCondition(
g, initial_trip_count, max_trip_count_value, n->input(0));
n->replaceInput(0, new_cond);
}
{
WithInsertPoint guard(body_block);
// Trip count is now a loop carried dependency. We emit an op to
// increment the trip count at the end of the body. Then, emit the same
// conjunctive stopping condition as above.
Value* const_one =
g->insertNode(g->createConstant(at::ones(at::CPU(at::kLong), {1})))
->output();
Value* inc_trip_count =
g->insertNode(g->create(
aten::add, {block_trip_count_input, const_one, const_one}, 1))
->output();
body_block->insertOutput(1, inc_trip_count);
Value* body_cond = createTripCountConjunctiveCondition(
g, inc_trip_count, max_trip_count_value, body_block->outputs()[0]);
body_block->eraseOutput(0);
body_block->insertOutput(0, body_cond);
}
}
for(auto sb : n->blocks()) {
desugarTripCounts(sb);
}
}
}
// removes all inputs and outputs to a graph, replacing them with nodes before of after each insertStage
static std::vector<std::vector<TypePtr>> flattenStages(Graph & graph) {
// because JIT classic needs this to fix up gradients, remove when possible
std::vector<std::vector<TypePtr>> stage_input_types;
WithInsertPoint guard(*graph.nodes().begin());
size_t input_pos = 0;
size_t output_pos = 0;
auto it = graph.nodes().begin();
for(size_t i = 0; i <= graph.stage(); i++) {
stage_input_types.emplace_back();
auto store = graph.create(prim::Store, 0)->insertBefore(*it);
while(input_pos < graph.inputs().size() && graph.inputs()[input_pos]->stage() == i) {
auto nv = store->addOutput();
auto old_node = graph.inputs()[input_pos];
stage_input_types[i].push_back(old_node->type());
old_node->replaceAllUsesWith(nv);
input_pos++;
}
while(it != graph.nodes().end() && it->stage() == i)
++it;
auto load = graph.create(prim::Load, 0)->insertBefore(*it);
while(output_pos < graph.outputs().size() && graph.outputs()[output_pos]->stage() == i) {
load->addInput(graph.outputs()[output_pos]);
output_pos++;
}
}
while (graph.inputs().size() > 0)
graph.eraseInput(graph.inputs().size() - 1);
while (graph.outputs().size() > 0)
graph.eraseOutput(graph.outputs().size() - 1);
return stage_input_types;
}
// insert Drop nodes to kill references for anything unused:
// this can happen in a few places, e.g. when a node returns
// many values but only one is used
// a, b = foo()
// return a
void dropUnused(Block *b) {
auto createDropIfUnused = [&](ArrayRef<Value*> values) -> Node* {
std::vector<Value*> to_drop;
for(auto v : values) {
if(v->uses().size() == 0)
to_drop.push_back(v);
}
if(to_drop.size() == 0)
return nullptr;
return b->owningGraph()->create(prim::Drop, to_drop, 0);
};
if(auto d = createDropIfUnused(b->inputs())) {
b->prependNode(d);
}
for(auto n : b->nodes()) {
if(auto d = createDropIfUnused(n->outputs())) {
d->insertAfter(n);
}
for(auto b : n->blocks())
dropUnused(b);
}
}
// for each input, should we move rather than copy the inputs
std::unordered_map<Node*, std::vector<uint8_t>> findLastUses(Graph & g) {
// struct to share common data structures
struct FindLastUses {
Graph & graph;
// have we seen this value, yet, if not, it is the last use of the value
std::unordered_set<Value*> seen;
std::unordered_map<Node*, std::vector<uint8_t>> move_flags;
// A map from an If or Loop node to the optional Drop block that
// occurs directly after it to release any tensors that go out of scope
// when the If/Loop exits. These are created and inserted on demand.
std::unordered_map<Node*, Node*> drop_for_node;
FindLastUses(Graph & g)
: graph(g) {
scanBlock(graph.block());
}
void scanBlock(Block * b) {
scanNode(b->return_node());
for(auto n : b->nodes().reverse()) {
scanNode(n);
}
}
void scanNode(Node * n) {
for(auto b : n->blocks()) {
scanBlock(b);
}
move_flags[n].resize(n->inputs().size());
// scan backwards so if a value is used twice in the list then it is a move
for(size_t i = n->inputs().size(); i > 0; --i) {
scanUse(n, i-1);
}
}
void scanUse(Node * n, size_t i) {
auto & move_flags_n = move_flags[n];
auto v = n->inputs()[i];
auto inserted = seen.insert(v).second;
if(!inserted) {
move_flags_n[i] = false;
return;
}
// the last use of v may be in a nested block of an If or Loop statement
// find the node 'same_depth_node' at the same depth as the definition of v,
// and consider that node to be the last use of v.
// This ensures we do not delete nodes in nested scopes
// that may be executed multiple times
// and that nodes used on one side of an if
// but not the other get deleted regardless of the branch
// e.g.
// a = 4
// while <...>:
// y = a + a
// drop(a)
// In other words, we find the first program point for v that
// _reverse_ dominates the definition of v, and add a drop point there.
Node * same_depth_node = findOwnerInBlock(n, v->node()->owningBlock());
JIT_ASSERT(same_depth_node); // failure means v is not in scope for n, use lint!
// In the case where v and n are in the same block, just mark
// its move_flags to be true
if(same_depth_node == n) {
move_flags_n[i] = true;
return;
}
// in the case where the use is nested in a block
// add a Drop node after that block which will drop 'v'.
move_flags_n[i] = false;
addToDropIfNotExists(findOrCreateDropInstructionForNode(same_depth_node), v);
}
// finds the node in block 'block' that contains in 'n'
// or nullptr if no such node exists, e.g.:
// n0: a = 4
// n1: if <cond>:
// n2: b = a + a
// findOwnerInBlock(n2, n0.block()) == n1
Node * findOwnerInBlock(Node * n, Block * block) {
while(n != nullptr && block != n->owningBlock()) {
n = n->owningBlock()->owningNode();
}
return n;
}
Node * findOrCreateDropInstructionForNode(Node * n) {
auto it = drop_for_node.find(n);
if(it == drop_for_node.end()) {
auto drop_node = graph.create(prim::Drop, 0);
drop_node->insertAfter(n);
it = drop_for_node.emplace(n, drop_node).first;
}
return it->second;
}
void addToDropIfNotExists(Node * drop, Value * v) {
for(auto i : drop->inputs()) {
// we already accounted for this use
if(i == v)
return;
}
drop->addInput(v);
move_flags[drop].push_back(true);
}
};
return FindLastUses(g).move_flags;
}
// pre-processing that happens once per graph
struct PreprocessGraph {
PreprocessGraph(Graph & g)
: graph(g.copy()) {
desugarTripCounts(graph->block());
stage_input_types = flattenStages(*graph);
dropUnused(graph->block());
// fill in move_flags by scanning blocks;
move_flags = findLastUses(*graph);
//TODO: desugar Loop trip counts, for now we drop trip counts
}
// Outputs of the preprocessing:
std::shared_ptr<Graph> graph;
// for each input, should we move rather than copy the inputs
std::unordered_map<Node*, std::vector<uint8_t>> move_flags;
std::vector<std::vector<TypePtr>> stage_input_types;
};
// previously the interpreter worked with at::Retainable values,
// which are annoying to handle since 99% of values are at::Tensor anyway
// instead we create a fake subclass of TensorImpl that can be subclassed
// to hold arbitrary things
struct ContainerTensor : public at::TensorImpl {
public:
ContainerTensor()
: TensorImpl(&(at::globalContext().getType(at::Backend::Undefined,at::ScalarType::Undefined))) {}
virtual ~ContainerTensor() {}
virtual const char * toString() const override {
throw std::runtime_error("toString() on ContainerTensor");
}
virtual at::IntList sizes() const override {
throw std::runtime_error("sizes() on ContainerTensor");
}
virtual at::IntList strides() const override {
throw std::runtime_error("strides() on ContainerTensor");
}
virtual int64_t dim() const override {
throw std::runtime_error("dim() on ContainerTensor");
}
virtual at::Scalar localScalar() override {
throw std::runtime_error("localScalar() on ContainerTensor");
}
virtual void * unsafeGetTH(bool retain) override {
throw std::runtime_error("unsafeGetTH() on ContainerTensor");
}
virtual std::unique_ptr<at::Storage> storage() override {
throw std::runtime_error("storage() on ContainerTensor");
}
};
// Dummy function is the last function that the autograd engine calls
// when evaluating Eval nodes. Its input tensors are the outputs that the
// Eval node needs to produce.
// We interscept these values using an Autograd callback. So the function itself
// never runs.
struct DummyFunction : autograd::Function {
virtual autograd::variable_list apply(const autograd::variable_list& inputs) override {
throw std::logic_error("DummyFunction::apply() called, but it should be blocked by a callback returning false");
}
};
// An AutogradHandle holds the information needed to run an Autograd backward pass
// after running a forward operator (such as PythonOp, CppOp, or for double-backwards another Eval Op)
// The EvalOperation uses AutogradHandle to perform this operation.
struct AutogradHandle : public ContainerTensor {
// The inputs of DummyFunction are the gradients of the forward passes
// inputs, and the _outputs_ of the run of the Autograd engine computing backward.
// there is one entry in this list for each forward input that requires
// gradients
std::shared_ptr<DummyFunction> forward_inputs;
// there is one entry in this list for each output of the forward pass
// that represents the location in the backwaard pass where the gradient
// of this output should be inserted at the beginning of the backward pass
autograd::edge_list forward_outputs;
};
// HandleBuilder is used to construct the correct Autograd Handle objects
// for use in a future stage.
// It is used even when the future stage does not require a handle since
// it also performs the conversions between Tensor and Variable, which
// behave differently depending on whether a future handle needs to be
// created.
struct HandleBuilder {
HandleBuilder(bool requires_handle) {
if(requires_handle) {
handle = new AutogradHandle();
handle->forward_inputs = std::make_shared<DummyFunction>();
}
}
autograd::Variable addInput(at::Tensor && input, const VariableFlags & flags_) {
if(handle && flags_.requires_grad) {
auto variable = autograd::make_variable(std::move(input), /*requires_grad=*/false);
autograd::create_gradient_edge(variable, handle->forward_inputs);
return variable;
} else {
return autograd::make_variable(std::move(input), /*requires_grad=*/false);
}
}
at::Tensor addOutput(const autograd::Variable & output) {
if(handle) {
handle->forward_outputs.push_back(output.gradient_edge());
}
return output.data();
}
void writeTo(Stack & outputs) {
// outputs takes ownership of handle
if(handle) {
outputs.push_back(at::Tensor(handle, /*retain=*/false));
handle = nullptr;
}
}
private:
AutogradHandle* handle = nullptr;
};
bool hasHandleOutput(Node * n) {
if(n->outputs().size() == 0)
return false;
auto & last = n->outputs().back();
return last->isHandle() && last->uses().size() > 0; // don't bother creating a handle if it is never used
}
#ifndef NO_PYTHON
Operation createPythonOperation(PythonOp* op, bool values_are_variables) {
py::function func;
if (op->tracing_autograd_python_function) {
func = py::function(py::handle(op->pyobj.get()).attr("apply"));
} else {
func = py::reinterpret_borrow<py::function>(py::handle(op->pyobj.get()));
}
bool tracing_autograd_python_function = op->tracing_autograd_python_function;
bool has_handle = hasHandleOutput(op);
size_t num_inputs = 0;
for(auto arg_type : op->cconv) {
if(arg_type == 't')
num_inputs++;
}
return [=](Stack & stack) {
AutoGIL gil;
py::tuple py_inputs(op->cconv.size());
size_t i = 0;
size_t next_scalar = 0;
size_t next_tensor = 0;
HandleBuilder builder(has_handle);
// Note: The first branch here should be considered deprecated and will
// probably be removed in the future.
//
// tracing_autograd_python_function indicates that we need to hook this
// PythonOp up to autograd with the HandleBuilder
if (tracing_autograd_python_function) {
for (auto arg_type : op->cconv) {
if (arg_type == 's') {
py_inputs[i] = py::reinterpret_borrow<py::object>(
op->scalar_args[next_scalar++].get());
} else if (arg_type == 't') {
py_inputs[i] = py::reinterpret_steal<py::object>(
THPVariable_Wrap(builder.addInput(
std::move(peek(stack, next_tensor, num_inputs)),
op->var_flags.at(next_tensor))));
next_tensor++;
}
i++;
}
drop(stack, num_inputs);
py::object py_outputs(func(*py_inputs));
auto num_outputs = op->outputs().size();
auto addOutput = [&](py::handle entry) {
if (!THPVariable_Check(entry.ptr())) {
throw std::runtime_error(
"Function.apply returned a non-Variable output");
}
THPVariable* var = (THPVariable*)entry.ptr();
stack.push_back(builder.addOutput(var->cdata));
};
if (!PyTuple_Check(py_outputs.ptr())) {
if (num_outputs != 1) {
throw std::runtime_error(
"Function.apply returned the wrong number of outputs.");
}
addOutput(py_outputs);
} else {
auto output_tuple = py::tuple(py_outputs);
if (output_tuple.size() != num_outputs) {
throw std::runtime_error(
"Function.apply returned the wrong number of outputs.");
}
for (py::handle entry : output_tuple) {
addOutput(entry);
}
}
builder.writeTo(stack);
return 0;
} else {
// In this case we're not hooking this PythonOp up to autograd. We always
// pass in and return Variables to the PythonOp. The flag
// values_are_variables indicates that the actual inputs and outputs are
// Variable types. In the case that this is false, we must wrap up inputs
// Tensors into Variables and we must unwrap the outputs to Tensors. In
// the other case, we pass in inputs and return outputs as-is
for (auto arg_type : op->cconv) {
if (arg_type == 's') {
py_inputs[i] = py::reinterpret_borrow<py::object>(
op->scalar_args[next_scalar++].get());
} else if (arg_type == 't') {
auto var = peek(stack, next_tensor, num_inputs);
if (!values_are_variables) {
var = autograd::make_variable(var);
}
py_inputs[i] =
py::reinterpret_steal<py::object>(THPVariable_Wrap(var));
next_tensor++;
}
i++;
}
drop(stack, num_inputs);
py::object py_outputs(func(*py_inputs));
auto num_outputs = op->outputs().size();
auto addOutput = [&](py::handle entry) {
if (!THPVariable_Check(entry.ptr())) {
throw std::runtime_error(
"Function application returned a non-Variable output");
}
THPVariable* var = (THPVariable*)entry.ptr();
auto cdata = var->cdata;
stack.push_back(values_are_variables ? std::move(cdata) : cdata.data());
};
if (!PyTuple_Check(py_outputs.ptr())) {
if (num_outputs != 1) {
throw std::runtime_error(
"Function.apply returned the wrong number of outputs.");
}
addOutput(py_outputs);
} else {
auto output_tuple = py::tuple(py_outputs);
if (output_tuple.size() != num_outputs) {
throw std::runtime_error(
"Function application returned the wrong number of outputs.");
}
for (py::handle entry : py::tuple(py_outputs)) {
addOutput(entry);
}
}
return 0;
}
};
}
#else
Operation createPythonOperation(PythonOp* op, bool values_are_variables) {
throw std::runtime_error("Trying to create Python operation from a C++ build");
return [=](Stack & stack) {
return 0;
};
}
#endif
Operation createCppOperation(CppOp* op) {
std::shared_ptr<autograd::Function> func = op->fn;
bool has_handle = hasHandleOutput(op);
auto num_inputs = op->inputs().size();
return [=](Stack & stack) {
HandleBuilder builder(has_handle);
autograd::variable_list v_inputs;
for(size_t i = 0; i < num_inputs; i++) {
v_inputs.push_back(builder.addInput(std::move(peek(stack, i, num_inputs)), op->var_flags[i]));
}
drop(stack, num_inputs);
autograd::variable_list v_outputs = (*func)(v_inputs);
for(auto & output : v_outputs) {
stack.push_back(builder.addOutput(output));
}
builder.writeTo(stack);
return 0;
};
}
Operation createEvalOperation(CppOp * op) {
bool has_handle_output = hasHandleOutput(op);
auto num_inputs = op->inputs().size();
return [=](Stack & stack) {
at::Tensor handle_t = std::move(stack.back());
AutogradHandle * handle_in = dynamic_cast<AutogradHandle*>(handle_t.get());
JIT_ASSERT(handle_in);
HandleBuilder builder(has_handle_output);
auto& engine = torch::autograd::Engine::getDefaultEngine();
autograd::variable_list v_inputs;
for(size_t i = 0; i < num_inputs - 1; i++) {
v_inputs.push_back(builder.addInput(std::move(peek(stack, i, num_inputs)), op->var_flags[i]));
}
drop(stack, num_inputs);
// TODO: handle create_graph appropriately
bool create_graph = true;
// note: node handle_in->use_count() == 1 means that we are guarenteed that we have the only
// only copy of the handle. This might make it seem it is ok to pass keep_graph=False.
// However, it is possible for 'copied_next_fns' to grab functions used by _other_ handles,
// and these functions will be executed in this run. Since these other handles
// may still be alive, it is not safe to release the graph
// TODO: we could cache this list in AutogradHandle (it's read only)
autograd::edge_list output_edges;
const auto num_inputs = handle_in->forward_inputs->num_inputs();
output_edges.reserve(num_inputs);
for (uint32_t i = 0; i < num_inputs; ++i)
output_edges.emplace_back(handle_in->forward_inputs, i);
auto values = engine.execute(handle_in->forward_outputs, v_inputs, true, create_graph, output_edges);
for(auto & v : values)
stack.push_back(builder.addOutput(v));
builder.writeTo(stack);
return 0;
};
}
// Returns a function implementing functionality of a given node,
// or nullptr if it's a no-op for autograd.
Operation getOperation(jit::Node* node, bool values_are_variables) {
IR_IFM(node, PythonOp)
return createPythonOperation(value, values_are_variables);
IR_ELSEIFM(CppOp)
if(dynamic_cast<autograd::Eval*>(value->fn.get())) {
return createEvalOperation(value);
} else {
return createCppOperation(value);
}
IR_ELSEIF(FusionGroup)
auto fusion_fn = sharedFusionCompiler().getOrCompile(value);
auto num_inputs = value->inputs().size();
return [fusion_fn, num_inputs](Stack & stack) {
autograd::profiler::RecordFunction record("FusionGroup");
std::vector<at::Tensor> toutputs;
// TODO: have fusion_fn work off of a stack as well
fusion_fn->launch(last(stack, num_inputs), toutputs);
drop(stack, num_inputs);
stack.insert(stack.end(), toutputs.begin(), toutputs.end());
return 0;
};
IR_ELSEIF(Constant)
if (values_are_variables) {
auto t = torch::autograd::make_variable(value->t(attr::value), false);
return [t](Stack& stack) {
stack.push_back(t);
return 0;
};
} else {
auto t = value->t(attr::value);
return [t](Stack & stack) {
stack.push_back(t);
return 0;
};
}
IR_ELSEIF(Undefined)
return [](Stack & stack) {
stack.push_back(at::Tensor());
return 0;
};
IR_ELSEIF(ReplaceIfUndef)
return [](Stack & stack) {
auto alternate = pop(stack);
auto result = pop(stack);
if(result.defined()) {
stack.push_back(std::move(result));
} else {
stack.push_back(std::move(alternate));
}
return 0;
};
IR_ELSEIF(Print)
size_t num_inputs = value->inputs().size();
return [num_inputs](Stack & stack) {
bool first = true;
for (at::Tensor i : last(stack, num_inputs)) {
if (!first) std::cout << " ";
first = false;
if (auto tensor_impl = dynamic_cast<at::TensorImpl*>(i.get())) {
std::cout << at::Tensor(tensor_impl, true);
} else if (!i.defined()) {
std::cout << "<undefined tensor>";
} else {
auto& r = *i.get();
std::cout << "<" << typeid(r).name() << " at " << i << ">";
}
}
drop(stack, num_inputs);
std::cout << std::endl;
return 0;
};
IR_ELSEIF(GraphExecutor)
GraphExecutor executor(value->g(attr::Subgraph));
auto num_inputs = value->inputs().size();
return [=](Stack& stack) mutable {
autograd::profiler::RecordFunction record("GraphExecutor");
auto inputs = last(stack, num_inputs);
variable_tensor_list tinputs(inputs.begin(), inputs.end());
drop(stack, num_inputs);
//TODO: has graph executor work from a stack as well
variable_tensor_list toutputs = executor.run(variable_tensor_list(std::move(tinputs)));
stack.insert(stack.end(), toutputs.begin(), toutputs.end());
return 0;
};
// Load x, y
// loads values from registers onto the stack, the actual callback does
// nothing since the stack manipulation is already encoded in inst.inputs
// and inst.outputs
IR_ELSEIF(Load)
return [=](Stack& stack) {
return 0;
};
// x, y = Store
// stores values from stack into registers, the actual callback does
// nothing since the stack manipulation is already encoded in inst.inputs
// and inst.outputs
IR_ELSEIF(Store)
return [=](Stack& stack) {
return 0;
};
IR_ELSEIF(Drop)
auto N = value->inputs().size();
return [=](Stack& stack) {
drop(stack, N);
return 0;
};
IR_ELSE()
return getTensorOp(node).op;
IR_END()
}
// We need some lists for inputs and outputs. To keep all the memory
// contiguous we allocate a single vector and use offsets into the vector
// which are stored in the ListHandle struct
// start is an offset into int_data of Code for ListHandle<int>
// and bool_data of Code for ListHandle<bool>
template<typename T>
struct ListHandle {
int start;
int size;
};
struct UseList {
// values to be used
ListHandle<int> values;
// boolean flags indicating whether to free the Tensor after this use
ListHandle<bool> free_flags;
};
// one instruction plus meta-data
struct Instruction {
Operation callback;
UseList inputs;
ListHandle<int> outputs;
Symbol debug_name; // used in dump to understand the generated code
std::shared_ptr<SourceLocation> debug_location; // for error reporting
};
int relativeJump(int from_inst, int to_inst) {
return to_inst - (from_inst + 1);
}
struct CodeImpl {
CodeImpl(std::shared_ptr<Graph>& graph_, bool values_are_variables)
: values_are_variables(values_are_variables), preprocess(*graph_) {
graph = preprocess.graph;
//std::cout << "into code graph:\n" << *graph << "\n";
insertNodesFromBlock(graph->block());
}
// jump when input is 0
void createJumpZ(int from_inst, int to_inst) {
auto & inst = instructions[from_inst];
JIT_ASSERT(inst.debug_name == prim::Placeholder);
auto offset = relativeJump(from_inst, to_inst);
inst.callback = [offset](Stack & stack) {
auto t = tensor_as<int64_t>(pop(stack));
return (t == 0) ? offset : 0;
};
inst.debug_name = prim::JumpZ;
}
// jump when input is not 0
void createJumpNZ(int from_inst, int to_inst) {
auto & inst = instructions[from_inst];
JIT_ASSERT(inst.debug_name == prim::Placeholder);
auto offset = relativeJump(from_inst, to_inst);
inst.callback = [offset](Stack & stack) {
auto t = tensor_as<int64_t>(pop(stack));
return (t != 0) ? offset : 0;
};
inst.debug_name = prim::JumpNZ;
}
void createJump(int from_inst, int to_inst) {
auto & inst = instructions[from_inst];
JIT_ASSERT(inst.debug_name == prim::Placeholder);
auto offset = relativeJump(from_inst, to_inst);
inst.callback = [=](Stack & stack) {
return offset;
};
inst.debug_name = prim::Jump;
}
void insertNodesFromBlock(Block* block) {
for(auto node : block->nodes()) {
const auto & source_location = node->getSourceLocation();
switch(node->kind()) {
case prim::If: {
// x = if c:
// <then_block>
// -> (vt)
// else:
// <else_block>
// -> (vf)
// turns into:
// JumpNZ c, then
// <else_block>
// x = vf
// Jump end
// then:
// <then_block>
// x = vt
// end:
// prim::Placeholder instructions are replaced with branch instructions
// when the branch target locations are known
auto cond_branch = insertInstruction(prim::Placeholder, source_location, node->inputs(), moveFlags(node), {});
auto then_block = node->blocks()[0];
auto else_block = node->blocks()[1];
insertNodesFromBlock(else_block);
insertAssign(source_location,else_block->outputs(), moveFlags(else_block), node->outputs());
auto jump = insertInstruction(prim::Placeholder, source_location, {}, {}, {});
auto then_block_start = instructions.size();
insertNodesFromBlock(then_block);
insertAssign(source_location, then_block->outputs(), moveFlags(then_block), node->outputs());
createJump(jump, instructions.size());
createJumpNZ(cond_branch, then_block_start);
} break;
case prim::Loop: {
// o0 = while c i0
// block 0: l0
// <body>
// -> (v0, v1)
// turns into:
// l0 = i0
// JumpZ c, end
// begin:
// <body>
// c, l0 = v0, v1
// JumpNZ c, begin
// end:
auto body_block = node->blocks()[0];
// before assign op: stack: ... <cond> <loop-carried-depdencies>
insertAssign(source_location, node->inputs(), moveFlags(node), body_block->inputs());
// after assign op: stack: ... <cond>
// cond_branch consumes <cond> from top of the stack
auto cond_branch = insertInstruction(prim::Placeholder, source_location,{}, {}, {});
// after branch: stack: ...
auto entry = instructions.size();
insertNodesFromBlock(body_block);
// before assign op: stack: ... <cond> <loop-carried-depdencies>
insertAssign(source_location, body_block->outputs(), moveFlags(body_block), body_block->inputs());
// after assign op: stack: ... <cond>
auto cond_branch_end = insertInstruction(prim::Placeholder, source_location, {}, {}, {});
// after branch: stack: ...
aliasRegistersTo(node->outputs(), body_block->inputs());
createJumpZ(cond_branch, instructions.size());
createJumpNZ(cond_branch_end, entry);
} break;
default: {
insertInstruction(node);
} break;
}
// each stage ends with a load instruction
// we record where these instructions occur, and use them to
// exit the interpreter
if(node->kind() == prim::Load) {
stage_end.push_back(instructions.size());
}
}
}
size_t insertInstruction(Node * n) {
auto inst = insertInstruction(n->kind(), n->getSourceLocation(), n->inputs(), moveFlags(n) , n->outputs());
instructions[inst].callback = getOperation(n, values_are_variables);
return inst;
}
size_t insertInstruction(Symbol sym,
std::shared_ptr<SourceLocation> debug_location,
ArrayRef<Value*> inputs,
ArrayRef<uint8_t> move_flags,
ArrayRef<Value*> outputs) {
instructions.emplace_back();
auto & inst = instructions.back();
inst.debug_name = sym;
inst.debug_location = std::move(debug_location);
listBegin(inst.inputs.values);
for(auto input : inputs) {
listInsert(inst.inputs.values, getOrAllocateRegister(input, true));
}
listBegin(inst.inputs.free_flags);
for(auto flag : move_flags) {
listInsert(inst.inputs.free_flags, flag);
}
listBegin(inst.outputs);
for(auto output : outputs) {
listInsert(inst.outputs, getOrAllocateRegister(output));
}
return instructions.size() - 1;
}
ArrayRef<uint8_t> moveFlags(Node * n) {
return preprocess.move_flags.at(n);
}
ArrayRef<uint8_t> moveFlags(Block *b) {
return moveFlags(b->return_node());
}
size_t insertAssign(std::shared_ptr<SourceLocation> debug_location, ArrayRef<Value*> inputs, ArrayRef<uint8_t> move_flags, ArrayRef<Value*> outputs) {
auto inst = insertInstruction(prim::Assign, std::move(debug_location),inputs, move_flags, outputs);
// This node effectively forwards its inputs into different places in a register list.
// We don't need to manipulate the stack in any way, because all inputs are also outputs,
// and the interpreter will take care of putting them in correct places.
instructions[inst].callback = [](Stack& stack) { return 0; };
return inst;
}
// helpers to build/access RegList objects
int get(const ListHandle<int> & list, int i) const {
return int_data[list.start + i];
}
bool get(const ListHandle<bool> & list, int i) const {
return bool_data[list.start + i];
}
void listBegin(ListHandle<int> & list) {
list.start = int_data.size();
list.size = 0;
}
void listInsert(ListHandle<int> & list, int value) {
JIT_ASSERTM(list.start + list.size == (int)int_data.size(), "another list already started");
int_data.push_back(value);
list.size++;
}
void listBegin(ListHandle<bool> & list) {
list.start = bool_data.size();
list.size = 0;
}
void listInsert(ListHandle<bool> & list, int value) {
JIT_ASSERTM(list.start + list.size == (int)bool_data.size(), "another list already started");
bool_data.push_back(value);
list.size++;
}
// must be called before any new_allocations are used, otherwise they will
// already have registers assigned
void aliasRegistersTo(ArrayRef<Value*> new_allocations, ArrayRef<Value*> existing_allocations) {
JIT_ASSERT(new_allocations.size() == existing_allocations.size());
for(size_t i = 0; i < new_allocations.size(); ++i) {
auto n = new_allocations[i]->unique();
auto e = existing_allocations[i]->unique();
JIT_ASSERT(unique_to_reg.count(e) > 0 && unique_to_reg.count(n) == 0);
unique_to_reg[n] = unique_to_reg[e];
}
}
int getOrAllocateRegister(Value * n, bool required = false) {
size_t u = n->unique();
if(unique_to_reg.count(u) > 0)
return unique_to_reg[u];
JIT_ASSERT(!required);
int r = register_size++;
unique_to_reg[u] = r;
return r;
}
void dumpInstruction(std::ostream & out, size_t pc) const {
auto writeList = [&](const ListHandle<int> & list) {
for(int i = 0; i < list.size; i++) {
if(i > 0)
out << ", ";
out << get(list, i);
}
};
auto writeUseList = [&](const UseList & list) {
for(int i = 0; i < list.values.size; i++) {
if(i > 0)
out << ", ";
if(get(list.free_flags, i))
out << "move(" << get(list.values, i) << ")";
else
out << get(list.values, i);
}
};
auto & inst = instructions.at(pc);
writeList(inst.outputs);
// NB: debug names are the kind of operator used to select
// dispatch
out << " = " << inst.debug_name.toUnqualString() << " ";
writeUseList(inst.inputs);
}
void dump(std::ostream & out) const {
for(size_t i = 0; i < instructions.size(); ++i) {
dumpInstruction(out, i);
out << "\n";
}
}
// We MUST hold onto graph here because some Operators stored in the
// instruction lists have dependencies on meta-data stored in the graph
// that would be dead otherwise.
// It is also very useful for debugging interpreter problems to
// keep this around.
std::shared_ptr<Graph> graph;
bool values_are_variables;
PreprocessGraph preprocess;
std::unordered_map<size_t, int> unique_to_reg; // map from unique of nodes to register in register table
friend struct InterpreterState;
std::vector<Instruction> instructions;
std::vector<size_t> stage_end; // each stage runs while(pc < stage_end[stage])
int register_size = 0;
// all memory ArrayRef<int> are slices of this, to make sure
// the interpreter is mostly linearly scanning through memory
std::vector<int> int_data;
std::vector<bool> bool_data;
};
// InterpreterState state that is held across stages and used to compute a Code
struct InterpreterStateImpl {
InterpreterStateImpl(const Code & function_)
: function(function_.pImpl),
int_data(function->int_data.data()),
bool_data(function->bool_data),
registers(function->register_size) {
}
void runOneStage(Stack & stack) {
// std::cout << "running stage: " << current_stage << " of " << function->stage_end.size() << "\n";
// std::cout << *function->graph << "\n";
// function->dump(std::cout);
size_t pc = current_pc;
size_t last = function->stage_end[current_stage];
auto & instructions = function->instructions;
while(pc < last) {
// std::cout << "executing " << pc << ": ";
// function->dumpInstruction(std::cout, pc);
// std::cout << "\n";
try {
auto & inst = instructions[pc];
loadTensorsFromRegisters(inst.inputs, stack);
size_t new_pc = pc + 1 + inst.callback(stack);
for(int i = inst.outputs.size - 1; i >= 0; i--) {
int reg = get(inst.outputs,i);
registers[reg] = pop(stack);
// std::cout << "pop reg[" << reg << "];\n" << registers[reg].pImpl << "\n";
}
pc = new_pc;
} catch(std::exception & e) {
if(!instructions[pc].debug_location)
throw; // rethrow original exception
// throw a new exception with enhanced debugging information
instructions[pc].debug_location->wrapAndRethrowException(e, "operation failed in interpreter");
}
}
current_pc = pc;
current_stage++;
}
const TensorType & tensorTypeForInput(size_t i) const {
return *function->preprocess.stage_input_types.at(current_stage).at(i)->expect<TensorType>();
}
int get(const ListHandle<int> & list, int i) {
return int_data[list.start + i];
};
bool get(const ListHandle<bool> & list, int i) {
return bool_data[list.start + i];
}
void loadTensorsFromRegisters(const UseList & uses, Stack & stack) {
for(int i = 0; i < uses.values.size; i++) {
int reg = get(uses.values,i);
// std::cout << "push reg[" << reg << "];\n" << registers[reg] << "\n\n";
if(get(uses.free_flags,i)) {
stack.push_back(std::move(registers[reg]));
} else {
stack.push_back(registers[reg]);
}
}
}
size_t current_stage = 0;
size_t current_pc = 0;
std::shared_ptr<CodeImpl> function; // keep function alive
// these are just copies of function to prevent indirections in interpreter
int * int_data;
const std::vector<bool> & bool_data;
// this holds all the tensors for this interpreter run
// we don't bother minimizing the size of this vector, since the extra
// memory used by the pointers in this will be small
// instead we are very aggresive about releasing tensors when they become dead
// to make sure memory management happens efficiently.
// We optimize for the case where derivatives are run with retain_graph=False
// in the case where it is true, then the interpreter and this array get copied
// if this every becomes a bottleneck then we _should_ consider minimizing the
// total number or register
std::vector<at::Tensor> registers;
// single buffer for input/output calls to ATen functions, so that we do not reallocate
Stack stack;
};
std::ostream & operator<<(std::ostream & out, const Code & code) {
out << *code.pImpl->graph << "\n";
code.pImpl->dump(out);
return out;
}
Code::Code(std::shared_ptr<Graph>& graph, bool values_are_variables)
: pImpl(new CodeImpl(graph, values_are_variables)) {}
Code::~Code() {}
InterpreterState::InterpreterState(const Code & function)
: pImpl(new InterpreterStateImpl(function)) {}
InterpreterState::~InterpreterState() {}
void InterpreterState::runOneStage(Stack & stack) {
return pImpl->runOneStage(stack);
}
const TensorType & InterpreterState::tensorTypeForInput(size_t i) const {
return pImpl->tensorTypeForInput(i);
}
InterpreterState InterpreterState::clone() const {
return InterpreterState(new InterpreterStateImpl(*pImpl));
}
InterpreterState::InterpreterState(InterpreterStateImpl * pImpl) : pImpl(pImpl) {}
}}