blob: 43baa6a6d90e08d7dbb53b5694573669e9b22c6a [file] [log] [blame]
import numpy as np
import torch
import io
from common_utils import TestCase, run_tests
import tempfile
class Foo(torch.nn.Module):
def __init__(self):
super(Foo, self).__init__()
self.qscheme = torch.per_tensor_symmetric
class TestQuantizedTensor(TestCase):
def test_qtensor(self):
num_elements = 10
r = torch.ones(num_elements, dtype=torch.float)
scale = 1.0
zero_point = 2
qr = torch.quantize_per_tensor(r, scale, zero_point, torch.quint8)
self.assertEqual(qr.q_scale(), scale)
self.assertEqual(qr.q_zero_point(), zero_point)
self.assertTrue(qr.is_quantized)
self.assertFalse(r.is_quantized)
self.assertEqual(qr.qscheme(), torch.per_tensor_affine)
self.assertTrue(isinstance(qr.qscheme(), torch.qscheme))
# slicing and int_repr
int_repr = qr.int_repr()
for num in int_repr:
self.assertEqual(num, 3)
for num in qr[2:].int_repr():
self.assertEqual(num, 3)
# dequantize
rqr = qr.dequantize()
for i in range(num_elements):
self.assertEqual(r[i], rqr[i])
# Scalar Tensor
# item
r = torch.ones(1, dtype=torch.float)
qr = torch.quantize_per_tensor(r, scale, zero_point, torch.quint8)
self.assertEqual(qr.item(), 1)
self.assertEqual(qr[0].item(), 1)
# assignment
self.assertTrue(qr[0].is_quantized)
qr[0] = 11.3 # float asignment
self.assertEqual(qr.item(), 11)
x = torch.ones(1, dtype=torch.float) * 15.3
# Copying from a float Tensor
qr[:] = x
self.assertEqual(qr.item(), 15)
# we can also print a qtensor
self.assertEqual(' '.join(str(qr).split()),
"tensor([15.], size=(1,), dtype=torch.quint8, " +
"quantization_scheme=torch.per_tensor_affine, " +
"scale=1.0, zero_point=2)")
empty_r = torch.ones((0, 1), dtype=torch.float)
empty_qr = torch.quantize_per_tensor(empty_r, scale, zero_point, torch.quint8)
self.assertEqual(' '.join(str(empty_qr).split()),
"tensor([], size=(0, 1), dtype=torch.quint8, " +
"quantization_scheme=torch.per_tensor_affine, " +
"scale=1.0, zero_point=2)")
def test_qtensor_quant_dequant(self):
r = torch.rand(3, 2, dtype=torch.float) * 4 - 2
scale = 0.02
zero_point = 2
qr = torch.quantize_per_tensor(r, scale, zero_point, torch.quint8)
rqr = qr.dequantize()
self.assertTrue(np.allclose(r.numpy(), rqr.numpy(), atol=2 / scale))
def test_per_channel_qtensor_creation(self):
numel = 10
ch_axis = 0
scales = torch.rand(numel)
zero_points = torch.randint(0, 10, size=(numel,))
q = torch._empty_per_channel_affine_quantized(
[numel], scales=scales, zero_points=zero_points, axis=ch_axis, dtype=torch.quint8)
self.assertEqual(scales, q.q_per_channel_scales())
self.assertEqual(zero_points, q.q_per_channel_zero_points())
self.assertEqual(ch_axis, q.q_per_channel_axis())
# create Tensor from uint8_t Tensor, scales and zero_points
int_tensor = torch.randint(0, 100, size=(numel,), dtype=torch.uint8)
q = torch._make_per_channel_quantized_tensor(int_tensor, scales, zero_points, ch_axis)
self.assertEqual(int_tensor, q.int_repr())
self.assertEqual(scales, q.q_per_channel_scales())
self.assertEqual(zero_points, q.q_per_channel_zero_points())
self.assertEqual(ch_axis, q.q_per_channel_axis())
def test_qtensor_creation(self):
scale = 0.5
zero_point = 10
val = 100
numel = 10
q = torch._empty_affine_quantized([numel], scale=scale, zero_point=zero_point, dtype=torch.quint8)
self.assertEqual(scale, q.q_scale())
self.assertEqual(zero_point, q.q_zero_point())
# create Tensor from uint8_t Tensor, scale and zero_point
int_tensor = torch.randint(0, 100, size=(10,), dtype=torch.uint8)
q = torch._make_per_tensor_quantized_tensor(int_tensor, scale, zero_point)
self.assertEqual(int_tensor, q.int_repr())
self.assertEqual(scale, q.q_scale())
self.assertEqual(zero_point, q.q_zero_point())
# create via empty_like
q = torch._empty_affine_quantized([numel], scale=scale, zero_point=zero_point, dtype=torch.quint8)
q_el = torch.empty_like(q)
self.assertEqual(q.q_scale(), q_el.q_scale())
self.assertEqual(q.q_zero_point(), q_el.q_zero_point())
self.assertEqual(q.dtype, q_el.dtype)
# create via empty_like but change the dtype (currently not supported)
with self.assertRaises(RuntimeError):
torch.empty_like(q, dtype=torch.qint8)
def test_qtensor_dtypes(self):
r = torch.rand(3, 2, dtype=torch.float) * 4 - 2
scale = 0.2
zero_point = 2
qr = torch.quantize_per_tensor(r, scale, zero_point, torch.qint8)
rqr = qr.dequantize()
self.assertTrue(np.allclose(r.numpy(), rqr.numpy(), atol=2 / scale))
qr = torch.quantize_per_tensor(r, scale, zero_point, torch.quint8)
rqr = qr.dequantize()
self.assertTrue(np.allclose(r.numpy(), rqr.numpy(), atol=2 / scale))
qr = torch.quantize_per_tensor(r, scale, zero_point, torch.qint32)
rqr = qr.dequantize()
self.assertTrue(np.allclose(r.numpy(), rqr.numpy(), atol=2 / scale))
def test_qtensor_quantize_per_channel(self):
r = torch.rand(3, 2, dtype=torch.float) * 4 - 2
scales = torch.tensor([0.2, 0.03], dtype=torch.double)
zero_points = torch.tensor([5, 10], dtype=torch.long)
axis = 1
def quantize_c(data, scales, zero_points):
res = torch.empty((3, 2))
quant_min, quant_max = 0, 255
for i in range(3):
for j in range(2):
res[i][j] = np.clip(np.round(data[i][j] / scales[j]) + zero_points[j], quant_min, quant_max)
return res
qr = torch.quantize_per_channel(r, scales, zero_points, axis, torch.quint8)
rqr = qr.dequantize()
self.assertTrue(np.allclose(qr.int_repr(), quantize_c(r, scales, zero_points)))
self.assertTrue(np.allclose(r.numpy(), rqr.numpy(), atol=2 / np.min(scales.numpy())))
def test_qtensor_permute(self):
r = torch.rand(10, 30, 2, 2, dtype=torch.float) * 4 - 2
scale = 0.02
zero_point = 1
qr = torch.quantize_per_tensor(r, scale, zero_point, torch.qint8)
qr = qr.transpose(0, 1)
rqr = qr.dequantize()
# compare transpose + dequantized result with orignal transposed result
self.assertTrue(np.allclose(r.numpy().transpose([1, 0, 2, 3]), rqr.numpy(), atol=2 / scale))
qr = torch.quantize_per_tensor(r, scale, zero_point, torch.qint8)
qr1 = qr.permute([1, 0, 2, 3])
qr2 = qr.transpose(0, 1)
# compare int representation after transformations
self.assertEqual(qr1.int_repr(), qr2.int_repr())
self.assertEqual(qr1.q_scale(), qr2.q_scale())
self.assertEqual(qr1.q_zero_point(), qr2.q_zero_point())
# compare dequantized result
self.assertEqual(qr1.dequantize(), qr2.dequantize())
# compare permuted + dequantized result with original transposed result
self.assertTrue(np.allclose(qr2.dequantize().numpy(), r.numpy().transpose([1, 0, 2, 3]), atol=2 / scale))
# make permuted result contiguous
self.assertEqual(qr2.contiguous().int_repr(), qr2.int_repr())
# change memory format
qlast = qr.contiguous(memory_format=torch.channels_last)
self.assertEqual(qr.stride(), list(reversed(sorted(qr.stride()))))
self.assertNotEqual(qlast.stride(), list(reversed(sorted(qlast.stride()))))
self.assertEqual(qr.int_repr(), qlast.int_repr())
self.assertEqual(qr.q_scale(), qlast.q_scale())
self.assertEqual(qr.q_zero_point(), qlast.q_zero_point())
self.assertEqual(qlast.dequantize(), qr.dequantize())
def test_qtensor_per_channel_permute(self):
r = torch.rand(20, 10, 2, 2, dtype=torch.float) * 4 - 2
scales = torch.rand(10) * 0.02 + 0.01
zero_points = torch.round(torch.rand(10) * 2 - 1).to(torch.long)
qr = torch.quantize_per_channel(r, scales, zero_points, 1, torch.qint8)
# we can't reorder the axis
with self.assertRaises(RuntimeError):
qr.transpose(0, 1)
# but we can change memory format
qlast = qr.contiguous(memory_format=torch.channels_last)
self.assertEqual(qr.stride(), list(reversed(sorted(qr.stride()))))
self.assertNotEqual(qlast.stride(), list(reversed(sorted(qlast.stride()))))
self.assertEqual(qr.int_repr(), qlast.int_repr())
self.assertEqual(scales, qlast.q_per_channel_scales())
self.assertEqual(zero_points, qlast.q_per_channel_zero_points())
self.assertEqual(1, qlast.q_per_channel_axis())
self.assertEqual(qlast.dequantize(), qr.dequantize())
def test_qtensor_load_save(self):
scale = 0.2
zero_point = 10
r = torch.rand(15, 2, dtype=torch.float32) * 2
for dtype in [torch.quint8, torch.qint8, torch.qint32]:
qr = torch.quantize_per_tensor(r, scale, zero_point, dtype)
qrv = qr[:, 1]
with tempfile.NamedTemporaryFile() as f:
# Serializing and Deserializing Tensor
torch.save((qr, qrv), f)
f.seek(0)
qr2, qrv2 = torch.load(f)
self.assertEqual(qr, qr2)
self.assertEqual(qrv, qrv2)
self.assertEqual(qr2.storage().data_ptr(), qrv2.storage().data_ptr())
def test_qtensor_per_channel_load_save(self):
r = torch.rand(20, 10, dtype=torch.float) * 4 - 2
scales = torch.rand(10) * 0.02 + 0.01
zero_points = torch.round(torch.rand(10) * 20 + 1).to(torch.long)
# quint32 is not supported yet
for dtype in [torch.quint8, torch.qint8]:
qr = torch.quantize_per_channel(r, scales, zero_points, 1, dtype)
with tempfile.NamedTemporaryFile() as f:
# Serializing and Deserializing Tensor
torch.save(qr, f)
f.seek(0)
qr2 = torch.load(f)
self.assertEqual(qr, qr2)
def test_qtensor_copy(self):
scale = 0.5
zero_point = 10
val = 100
numel = 10
# copy from same scale and zero_point
q = torch._empty_affine_quantized([numel], scale=scale, zero_point=zero_point, dtype=torch.quint8)
q2 = torch._empty_affine_quantized([numel], scale=scale, zero_point=zero_point, dtype=torch.quint8)
q.copy_(q2)
self.assertEqual(q.int_repr(), q2.int_repr())
self.assertEqual(q.q_scale(), q2.q_scale())
self.assertEqual(q.q_zero_point(), q2.q_zero_point())
# copying from different scale and zero_point
scale = 3.2
zero_point = 5
q = torch._empty_affine_quantized([numel], scale=scale, zero_point=zero_point, dtype=torch.quint8)
# check original scale and zero_points are set correctly
self.assertEqual(q.q_scale(), scale)
self.assertEqual(q.q_zero_point(), zero_point)
q.copy_(q2)
# check scale and zero_points has been copied
self.assertEqual(q, q2)
def test_qtensor_clone(self):
numel = 10
scale = 0.5
zero_point = 10
q2 = torch._empty_affine_quantized([numel], scale=scale, zero_point=zero_point, dtype=torch.quint8)
q = q2.clone()
# Check to make sure the scale and zero_point has been copied.
self.assertEqual(q, q2)
def test_qtensor_view(self):
scale, zero_point, dtype = 1.0, 2, torch.uint8
q_int = torch.randint(0, 100, [1, 2, 3], dtype=dtype)
q = torch._make_per_tensor_quantized_tensor(q_int, scale=scale, zero_point=zero_point)
q2 = q.view(1, 3, 2)
self.assertEqual(q.numel(), q2.numel())
# testing -1
self.assertEqual(q, q2.view(1, -1, 3))
a_int = torch.randint(0, 100, [1, 2, 3, 4], dtype=dtype)
a = torch._make_per_tensor_quantized_tensor(a_int, scale=scale, zero_point=zero_point)
b = a.transpose(1, 2) # swaps 2nd and 3rd dimension
c = a.view(1, 3, 2, 4) # does not change tensor layout in memory
self.assertEqual(b.size(), c.size())
self.assertEqual(b.q_scale(), c.q_scale())
self.assertEqual(b.q_zero_point(), c.q_zero_point())
self.assertNotEqual(b.stride(), c.stride())
# size is the same but the underlying data is different
self.assertNotEqual(b.int_repr(), c.int_repr())
self.assertFalse(torch.equal(b, c))
# a case can't view non-contiguos Tensor
a_int = torch.randint(0, 100, [1, 2, 3, 4], dtype=dtype)
a = torch._make_per_tensor_quantized_tensor(a_int, scale=scale, zero_point=zero_point)
b = a.transpose(1, 2) # swaps 2nd and 3rd dimension
err_str = "view size is not compatible with input tensor's size and stride*"
with self.assertRaisesRegex(RuntimeError, err_str):
b.view(1, 4, 2, 3)
# view on contiguous tensor is fine
b.contiguous().view(1, 4, 2, 3)
def test_qtensor_reshape(self):
scale, zero_point, dtype = 1.0, 2, torch.uint8
q_int = torch.randint(0, 100, [3, 5], dtype=dtype)
q = torch._make_per_tensor_quantized_tensor(q_int, scale=scale, zero_point=zero_point)
q2 = q.reshape([15])
self.assertEqual(q.numel(), q2.numel())
self.assertEqual(q2.size(), [15])
# testing -1
self.assertEqual(q, q2.reshape([3, -1]))
a_int = torch.randint(0, 100, [1, 2, 3, 4], dtype=dtype)
a = torch._make_per_tensor_quantized_tensor(a_int, scale=scale, zero_point=zero_point)
b = a.transpose(1, 2) # swaps 2nd and 3rd dimension
c = a.reshape(1, 3, 2, 4) # does not change tensor layout
self.assertEqual(b.size(), c.size())
self.assertEqual(b.q_scale(), c.q_scale())
self.assertEqual(b.q_zero_point(), c.q_zero_point())
self.assertNotEqual(b.stride(), c.stride())
self.assertNotEqual(b.int_repr(), c.int_repr())
self.assertFalse(torch.equal(b, c))
# we can use reshape for non-contiguous Tensor
a_int = torch.randint(0, 100, [1, 2, 3, 4], dtype=dtype)
a = torch._make_per_tensor_quantized_tensor(a_int, scale=scale, zero_point=zero_point)
b = a.transpose(1, 2) # swaps 2nd and 3rd dimension
c = b.reshape(1, 4, 2, 3)
def test_qscheme_pickle(self):
f = Foo()
buf = io.BytesIO()
torch.save(f, buf)
buf.seek(0)
f2 = torch.load(buf)
self.assertEqual(f2.qscheme, torch.per_tensor_symmetric)
if __name__ == "__main__":
run_tests()