| import numpy as np |
| import unittest |
| |
| import torch |
| import torch.jit |
| import torch.nn.functional as F |
| from torch.nn.modules.utils import _pair |
| |
| from hypothesis import settings, HealthCheck |
| from hypothesis import assume, given |
| from hypothesis import strategies as st |
| import hypothesis_utils as hu |
| from hypothesis_utils import no_deadline |
| |
| from common_utils import TEST_WITH_UBSAN, TestCase, run_tests, IS_PPC |
| from common_quantized import _quantize, _dequantize, _calculate_dynamic_qparams, \ |
| override_quantized_engine |
| |
| # Make sure we won't have overflows from vpmaddubsw instruction used in FBGEMM. |
| # On the current Intel x86 architecture, we need to utilize vpmaddubsw instruction |
| # for the 8-bit int multiplication. This instruction vertically multiplies each |
| # unsigned 8-bit integer from a with the corresponding signed 8-bit integer from |
| # b, producing intermediate signed 16-bit integers. This function modifies the |
| # weights to eliminate the overflow on the signed 16-bit integers. |
| def avoid_vpmaddubsw_overflow_linear( |
| batch_size, input_channels, output_channels, X, X_min, X_max, W, W_min, W_max |
| ): |
| for i, j in np.ndindex((batch_size, output_channels)): |
| for k in range(0, input_channels // 2 * 2, 2): |
| x0 = X[i, k] - X_min |
| x1 = X[i, k + 1] - X_min |
| w0 = W[j, k] - 128 - W_min |
| w1 = W[j, k + 1] - 128 - W_min |
| if x0 * w0 + x1 * w1 < -(1 << 15): |
| w1_adjusted = (-(1 << 15) - float(x0) * w0) / x1 |
| W[j, k + 1] = int(w1_adjusted) + 128 + W_min |
| elif x0 * w0 + x1 * w1 > (1 << 15) - 1: |
| w1_adjusted = ((1 << 15) - 1 - float(x0) * w0) / x1 |
| W[j, k + 1] = int(w1_adjusted) + 128 + W_min |
| |
| # Go through the same loop again to double check we don't have any overflow |
| for i, j in np.ndindex((batch_size, output_channels)): |
| for k in range(0, input_channels // 2 * 2, 2): |
| x0 = X[i, k] - X_min |
| x1 = X[i, k + 1] - X_min |
| w0 = W[j, k] - 128 - W_min |
| w1 = W[j, k + 1] - 128 - W_min |
| assert -(1 << 15) <= x0 * w0 + x1 * w1 < (1 << 15) |
| |
| |
| # Reference quantized Linear operator |
| def qlinear_ref(X_q, X_scale, X_zp, W_q, W_scale, W_zp, b_q, Y_scale, Y_zp): |
| X_q = np.reshape(X_q, (-1, X_q.shape[X_q.ndim - 1])) |
| row_offsets_ref = X_q.sum(axis=1).astype(np.int32).reshape((-1, 1)) |
| col_offsets_ref = W_q.sum(axis=1).astype(np.int32).reshape((1, -1)) |
| assert X_q.ndim == 2 |
| batch_size, input_channels = X_q.shape |
| Prod_XqWq_ref = ( |
| np.matmul(X_q.astype(np.int32), W_q.astype(np.int32).T) |
| - W_zp * row_offsets_ref |
| - X_zp * col_offsets_ref |
| + input_channels * X_zp * W_zp |
| ) |
| if b_q is not None: |
| Prod_XqWq_ref += b_q |
| Y_q_ref = _quantize(Prod_XqWq_ref, Y_scale / (X_scale * W_scale), Y_zp) |
| return Y_q_ref |
| |
| """Computes the output shape given pooling parameters.""" |
| def pool_output_shape(input_size, kernel_size, padding, stride, |
| dilation, ceiling_mode=False): |
| if stride is None: |
| stride = kernel_size |
| output_size = ( |
| (input_size + 2 * padding - dilation * (kernel_size - 1) - 1 |
| + (stride - 1 if ceiling_mode else 0)) // stride + 1) |
| if (padding > 0 and |
| ((output_size - 1) * stride >= input_size + padding)): |
| output_size += 1 |
| return output_size |
| |
| class TestQuantizedOps(TestCase): |
| |
| """Tests the correctness of the quantized::relu op.""" |
| @given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5), |
| qparams=hu.qparams())) |
| def test_qrelu(self, X): |
| X, (scale, zero_point, torch_type) = X |
| |
| Y = X.copy() |
| Y[Y < 0] = 0 |
| qY = torch.quantize_per_tensor(torch.from_numpy(Y), scale=scale, |
| zero_point=zero_point, dtype=torch_type) |
| X = torch.from_numpy(X) |
| qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, |
| dtype=torch_type) |
| |
| ops_under_test = { |
| 'native': torch.relu, |
| 'nn.functional': torch.nn.functional.relu, |
| } |
| |
| for name, op in ops_under_test.items(): |
| qY_hat = op(qX) |
| self.assertEqual(qY, qY_hat, message="{} relu failed".format(name)) |
| |
| ops_under_test_inplace = { |
| 'inplace native': torch.relu_, |
| 'inplace nn.functional': torch.nn.functional.relu_, |
| } |
| |
| for name, op_ in ops_under_test_inplace.items(): |
| qY_hat = qX.clone() |
| op_(qY_hat) |
| self.assertEqual(qY, qY_hat, message="{} relu failed".format(name)) |
| |
| """Tests the correctness of the quantized::relu op.""" |
| @given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5), |
| qparams=hu.qparams())) |
| def test_qrelu6(self, X): |
| X, (scale, zero_point, torch_type) = X |
| |
| Y = X.copy() |
| Y[Y < 0] = 0 |
| Y[Y > 6.0] = 6.0 |
| qY = torch.quantize_per_tensor(torch.from_numpy(Y), scale=scale, |
| zero_point=zero_point, dtype=torch_type) |
| X = torch.from_numpy(X) |
| qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, |
| dtype=torch_type) |
| |
| ops_under_test = { |
| 'ops.quantized': torch.ops.quantized.relu6, |
| 'module': torch.nn.quantized.ReLU6(), |
| } |
| |
| for name, op in ops_under_test.items(): |
| qY_hat = op(qX) |
| self.assertEqual(qY, qY_hat, message="{} relu failed".format(name)) |
| |
| """Tests the correctness of the scalar addition.""" |
| @no_deadline |
| @given(A=hu.tensor(shapes=hu.array_shapes(1, 4, 1, 5), |
| elements=st.floats(-1e6, 1e6, allow_nan=False), |
| qparams=hu.qparams()), |
| b=st.floats(-1e6, 1e6, allow_nan=False, allow_infinity=False)) |
| def test_qadd_scalar_relu(self, A, b): |
| import copy |
| add_scalar = torch.ops.quantized.add_scalar |
| add_scalar_relu = torch.ops.quantized.add_scalar_relu |
| |
| A, (scale, zero_point, dtype) = A |
| A = A.astype(np.float32) |
| qA = torch.quantize_per_tensor(torch.from_numpy(A), scale, zero_point, dtype) |
| |
| C = qA.dequantize() + round(b / scale) * scale |
| C_relu = copy.deepcopy(C) |
| C_relu[C_relu < 0] = 0 |
| |
| C_hat = add_scalar(qA, b) |
| C_ref = torch.quantize_per_tensor(C, C_hat.q_scale(), C_hat.q_zero_point(), dtype) |
| C_relu_hat = add_scalar_relu(qA, b) |
| C_relu_ref = torch.quantize_per_tensor( |
| C_relu, C_relu_hat.q_scale(), C_relu_hat.q_zero_point(), dtype) |
| |
| self.assertEqual(C_ref.dequantize(), C_hat.dequantize(), |
| message="Scalar add results don't match:\ |
| {} vs {}".format(C_ref.dequantize(), C_hat.dequantize())) |
| self.assertEqual(C_relu_ref.dequantize(), C_relu_hat.dequantize(), |
| message="Scalar add relu results don't match:\ |
| {} vs {}".format(C_relu_ref.dequantize(), C_relu_hat.dequantize())) |
| |
| """Tests the correctness of the add and add_relu op.""" |
| def test_qadd_relu_same_qparams(self): |
| for dtype in [torch.quint8, torch.qint8, torch.qint32]: |
| add_relu = torch.ops.quantized.add_relu |
| add = torch.ops.quantized.add |
| add_out = torch.ops.quantized.add_out |
| add_relu_out = torch.ops.quantized.add_relu_out |
| |
| # NB: This is a strange size so that we exercise both the vectorized |
| # implementation (64-element chunks at at time) as well as the scalar |
| # implementation |
| A = torch.arange(-128, 130, dtype=torch.float) |
| B = torch.arange(-128, 130, dtype=torch.float) |
| scale = 2.0 |
| zero_point = 127 |
| qA = torch.quantize_per_tensor(A, scale=scale, zero_point=zero_point, |
| dtype=dtype) |
| qB = torch.quantize_per_tensor(B, scale=scale, zero_point=zero_point, |
| dtype=dtype) |
| |
| # Add ReLU ground truth |
| C = (qA.dequantize() + qB.dequantize()).numpy() |
| np_dtype = { |
| torch.quint8 : np.uint8, |
| torch.qint8 : np.int8, |
| torch.qint32 : np.int32 |
| } |
| qC = _quantize(C, scale, zero_point, dtype=np_dtype[dtype]) |
| qC_hat = add(qA, qB, scale=scale, zero_point=zero_point) |
| np.testing.assert_equal(qC, qC_hat.int_repr(), |
| "Quantized addition failed.") |
| qC_out_hat = torch._empty_affine_quantized(qC.shape, |
| scale=scale, |
| zero_point=zero_point, |
| dtype=dtype) |
| add_out(qA, qB, out=qC_out_hat) |
| self.assertEqual(qC_hat, qC_out_hat, message="Add.out failed") |
| |
| # Add + ReLU ground truth |
| Crelu = C.copy() |
| Crelu[C < 0] = 0 |
| qCrelu = _quantize(Crelu, scale, zero_point, dtype=np_dtype[dtype]) |
| qCrelu_hat = add_relu(qA, qB, scale=scale, zero_point=zero_point) |
| np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(), |
| "Quantized addition with ReLU failed.") |
| qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape, |
| scale=scale, |
| zero_point=zero_point, |
| dtype=dtype) |
| add_relu_out(qA, qB, out=qCrelu_out_hat) |
| self.assertEqual(qCrelu_hat, qCrelu_out_hat, |
| message="AddReLU.out failed") |
| |
| |
| """Tests the correctness of the add and add_relu op.""" |
| def test_qadd_relu_different_qparams(self): |
| for dtype in [torch.quint8, torch.qint8, torch.qint32]: |
| add_relu = torch.ops.quantized.add_relu |
| add = torch.ops.quantized.add |
| add_out = torch.ops.quantized.add_out |
| add_relu_out = torch.ops.quantized.add_relu_out |
| |
| # NB: This is a strange size so that we exercise both the vectorized |
| # implementation (64-element chunks at at time) as well as the scalar |
| # implementation |
| A = torch.arange(-128, 130, dtype=torch.float) |
| B = torch.arange(-128, 130, dtype=torch.float) |
| scale_A = 3.0 |
| zero_point_A = 7 |
| scale_B = 5.0 |
| zero_point_B = 127 |
| |
| scale_C = 0.5 |
| zero_point_C = 5 |
| |
| qA = torch.quantize_per_tensor(A, scale=scale_A, zero_point=zero_point_A, |
| dtype=dtype) |
| qB = torch.quantize_per_tensor(B, scale=scale_B, zero_point=zero_point_B, |
| dtype=dtype) |
| |
| # Add ground truth |
| C = (qA.dequantize() + qB.dequantize()).numpy() |
| np_dtype = { |
| torch.quint8 : np.uint8, |
| torch.qint8 : np.int8, |
| torch.qint32 : np.int32 |
| } |
| qC = _quantize(C, scale_C, zero_point_C, dtype=np_dtype[dtype]) |
| qC_hat = add(qA, qB, scale=scale_C, zero_point=zero_point_C) |
| np.testing.assert_equal(qC, qC_hat.int_repr(), |
| "Quantized addition failed.") |
| qC_out_hat = torch._empty_affine_quantized(qC.shape, |
| scale=scale_C, |
| zero_point=zero_point_C, |
| dtype=dtype) |
| add_out(qA, qB, out=qC_out_hat) |
| self.assertEqual(qC_hat, qC_out_hat, message="Add.out failed") |
| |
| # Add + ReLU ground truth |
| Crelu = C.copy() |
| Crelu[C < 0] = 0 |
| qCrelu = _quantize(Crelu, scale_C, zero_point_C, dtype=np_dtype[dtype]) |
| qCrelu_hat = add_relu(qA, qB, scale=scale_C, zero_point=zero_point_C) |
| np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(), |
| "Quantized addition with ReLU failed.") |
| qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape, |
| scale=scale_C, |
| zero_point=zero_point_C, |
| dtype=dtype) |
| add_relu_out(qA, qB, out=qCrelu_out_hat) |
| self.assertEqual(qCrelu_hat, qCrelu_out_hat, |
| message="AddReLU.out failed") |
| |
| """Tests the correctness of the mul and mul_relu op.""" |
| def test_qmul_relu_same_qparams(self): |
| mul_relu = torch.ops.quantized.mul_relu |
| mul = torch.ops.quantized.mul |
| mul_out = torch.ops.quantized.mul_out |
| mul_relu_out = torch.ops.quantized.mul_relu_out |
| |
| A = torch.arange(-25, 25, dtype=torch.float) |
| B = torch.arange(-25, 25, dtype=torch.float) |
| scale = 2.0 |
| zero_point = 127 |
| qA = torch.quantize_per_tensor(A, scale=scale, zero_point=zero_point, |
| dtype=torch.quint8) |
| qB = torch.quantize_per_tensor(B, scale=scale, zero_point=zero_point, |
| dtype=torch.quint8) |
| |
| # mul ReLU ground truth |
| C = (qA.dequantize() * qB.dequantize()).numpy() |
| qC = _quantize(C, scale, zero_point) |
| qC_hat = mul(qA, qB, scale=scale, zero_point=zero_point) |
| np.testing.assert_equal(qC, qC_hat.int_repr(), |
| "Quantized mulition failed.") |
| qC_out_hat = torch._empty_affine_quantized(qC.shape, |
| scale=scale, |
| zero_point=zero_point, |
| dtype=torch.quint8) |
| mul_out(qA, qB, out=qC_out_hat) |
| self.assertEqual(qC_hat, qC_out_hat, message="mul.out failed") |
| |
| # mul + ReLU ground truth |
| Crelu = C.copy() |
| Crelu[C < 0] = 0 |
| qCrelu = _quantize(Crelu, scale, zero_point) |
| qCrelu_hat = mul_relu(qA, qB, scale=scale, zero_point=zero_point) |
| np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(), |
| "Quantized mulition with ReLU failed.") |
| qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape, |
| scale=scale, |
| zero_point=zero_point, |
| dtype=torch.quint8) |
| mul_relu_out(qA, qB, out=qCrelu_out_hat) |
| self.assertEqual(qCrelu_hat, qCrelu_out_hat, |
| message="mulReLU.out failed") |
| |
| # Scalar multiplication |
| for b in B: |
| C_ref = qA.dequantize().numpy() * b.item() |
| qC_hat = torch.ops.quantized.mul_scalar(qA, b.item()) |
| |
| self.assertEqual(C_ref, qC_hat.dequantize()) |
| |
| # Scalar multiplication + relu |
| for b in B: |
| C_ref = qA.dequantize().numpy() * b.item() |
| C_ref[C_ref < 0] = 0 |
| qC_hat = torch.ops.quantized.mul_scalar_relu(qA, b.item()) |
| |
| self.assertEqual(C_ref, qC_hat.dequantize()) |
| |
| """Tests the correctness of the mul and mul_relu op.""" |
| def test_qmul_relu_different_qparams(self): |
| mul_relu = torch.ops.quantized.mul_relu |
| mul = torch.ops.quantized.mul |
| mul_out = torch.ops.quantized.mul_out |
| mul_relu_out = torch.ops.quantized.mul_relu_out |
| |
| A = torch.arange(-25, 25, dtype=torch.float) |
| B = torch.arange(-25, 25, dtype=torch.float) |
| scale_A = 3.0 |
| zero_point_A = 7 |
| scale_B = 5.0 |
| zero_point_B = 127 |
| |
| scale_C = 0.5 |
| zero_point_C = 5 |
| |
| qA = torch.quantize_per_tensor(A, scale=scale_A, zero_point=zero_point_A, |
| dtype=torch.quint8) |
| qB = torch.quantize_per_tensor(B, scale=scale_B, zero_point=zero_point_B, |
| dtype=torch.quint8) |
| |
| # mul ground truth |
| C = (qA.dequantize() * qB.dequantize()).numpy() |
| qC = _quantize(C, scale_C, zero_point_C) |
| qC_hat = mul(qA, qB, scale=scale_C, zero_point=zero_point_C) |
| np.testing.assert_equal(qC, qC_hat.int_repr(), |
| "Quantized multiplication failed.") |
| qC_out_hat = torch._empty_affine_quantized(qC.shape, |
| scale=scale_C, |
| zero_point=zero_point_C, |
| dtype=torch.quint8) |
| mul_out(qA, qB, out=qC_out_hat) |
| self.assertEqual(qC_hat, qC_out_hat, message="mul.out failed") |
| |
| # mul + ReLU ground truth |
| Crelu = C.copy() |
| Crelu[C < 0] = 0 |
| qCrelu = _quantize(Crelu, scale_C, zero_point_C) |
| qCrelu_hat = mul_relu(qA, qB, scale=scale_C, zero_point=zero_point_C) |
| np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(), |
| "Quantized multiplication with ReLU failed.") |
| qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape, |
| scale=scale_C, |
| zero_point=zero_point_C, |
| dtype=torch.quint8) |
| mul_relu_out(qA, qB, out=qCrelu_out_hat) |
| self.assertEqual(qCrelu_hat, qCrelu_out_hat, |
| message="mulReLU.out failed") |
| |
| """Tests max pool operation on quantized tensors.""" |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4, |
| min_side=1, max_side=10), |
| qparams=hu.qparams()), |
| kernel=st.sampled_from((3, 5, 7)), |
| stride=st.sampled_from((None, 1, 2)), |
| dilation=st.integers(1, 2), |
| padding=st.integers(0, 2), |
| ceil_mode=st.booleans()) |
| def test_max_pool2d(self, X, kernel, stride, dilation, padding, ceil_mode): |
| X, (scale, zero_point, torch_type) = X |
| # Check constraints |
| assume(kernel // 2 >= padding) # Kernel cannot be overhanging! |
| iH, iW = X.shape[-2:] |
| oH = pool_output_shape(iH, kernel, padding, stride, dilation, ceil_mode) |
| assume(oH > 0) |
| oW = pool_output_shape(iW, kernel, padding, stride, dilation, ceil_mode) |
| assume(oW > 0) |
| |
| a = torch.from_numpy(X) |
| a_pool = torch.nn.functional.max_pool2d(a, kernel_size=kernel, |
| stride=stride, |
| padding=padding, dilation=dilation, |
| ceil_mode=ceil_mode) |
| a_ref = torch.quantize_per_tensor(a_pool, scale=scale, |
| zero_point=zero_point, dtype=torch_type) |
| a_ref = a_ref.dequantize() |
| qa = torch.quantize_per_tensor(a, scale=scale, zero_point=zero_point, |
| dtype=torch_type) |
| |
| ops_under_test = { |
| "torch": torch.max_pool2d, |
| "nn.functional": torch.nn.functional.max_pool2d, |
| "nn.quantized.functional": torch.nn.quantized.functional.max_pool2d |
| } |
| |
| for name, op in ops_under_test.items(): |
| a_hat = op(qa, kernel_size=kernel, stride=stride, padding=padding, |
| dilation=dilation, ceil_mode=ceil_mode) |
| self.assertEqual(a_ref, a_hat.dequantize(), |
| message="{} results are off".format(name)) |
| # Test the ops.quantized separately, because None is not treated. |
| a_hat = torch.ops.quantized.max_pool2d( |
| qa, kernel_size=_pair(kernel), |
| stride=_pair(kernel if stride is None else stride), |
| padding=_pair(padding), dilation=_pair(dilation), ceil_mode=ceil_mode) |
| self.assertEqual(a_ref, a_hat.dequantize(), |
| message="ops.quantized.max_pool2d results are off") |
| |
| """Tests max pool operation on NHWC quantized tensors.""" |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4, |
| min_side=1, max_side=10), |
| qparams=hu.qparams()), |
| kernel=st.sampled_from((3, 5, 7)), |
| stride=st.sampled_from((None, 1, 2)), |
| dilation=st.integers(1, 2), |
| padding=st.integers(0, 2), |
| ceil_mode=st.booleans()) |
| def test_max_pool2d_nhwc(self, X, kernel, stride, dilation, padding, ceil_mode): |
| X, (scale, zero_point, torch_type) = X |
| # Ensure we hit the vectorized paths |
| # 176 = 128 + 32 + 16 |
| # 128 hits the interleaved path |
| # 32 hits the non-interleaved path |
| # 16 hits the scalar path |
| if X.shape[1] < 176: |
| X = np.repeat(X, 176 / X.shape[1], 1) |
| # Check constraints |
| assume(kernel // 2 >= padding) # Kernel cannot be overhanging! |
| iH, iW = X.shape[-2:] |
| oH = pool_output_shape(iH, kernel, padding, stride, dilation, ceil_mode) |
| assume(oH > 0) |
| oW = pool_output_shape(iW, kernel, padding, stride, dilation, ceil_mode) |
| assume(oW > 0) |
| |
| X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 1])) |
| a = torch.from_numpy(X_nchw).permute([0, 3, 1, 2]) |
| a_pool = torch.nn.functional.max_pool2d(a, kernel_size=kernel, |
| stride=stride, |
| padding=padding, dilation=dilation, |
| ceil_mode=ceil_mode) |
| a_ref = torch.quantize_per_tensor(a_pool, scale=scale, |
| zero_point=zero_point, dtype=torch_type) |
| a_ref = a_ref.dequantize() |
| qa = torch.quantize_per_tensor(torch.from_numpy(X_nchw), scale=scale, zero_point=zero_point, |
| dtype=torch_type).permute([0, 3, 1, 2]) |
| self.assertTrue(qa.stride() != sorted(qa.stride())) |
| |
| ops_under_test = { |
| "torch": torch.max_pool2d, |
| "nn.functional": torch.nn.functional.max_pool2d, |
| "nn.quantized.functional": torch.nn.quantized.functional.max_pool2d |
| } |
| |
| for name, op in ops_under_test.items(): |
| a_hat = op(qa, kernel_size=kernel, stride=stride, padding=padding, |
| dilation=dilation, ceil_mode=ceil_mode) |
| self.assertTrue(a_hat.stride() != sorted(a_hat.stride())) |
| self.assertEqual(a_ref, a_hat.dequantize(), |
| message="{} results are off".format(name)) |
| # Test the ops.quantized separately, because None is not treated. |
| a_hat = torch.ops.quantized.max_pool2d( |
| qa, kernel_size=_pair(kernel), |
| stride=_pair(kernel if stride is None else stride), |
| padding=_pair(padding), dilation=_pair(dilation), ceil_mode=ceil_mode) |
| self.assertEqual(a_ref, a_hat.dequantize(), |
| message="ops.quantized.max_pool2d results are off") |
| |
| @no_deadline |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4, |
| min_side=5, max_side=10), |
| qparams=hu.qparams(dtypes=torch.quint8)), |
| kernel=st.sampled_from((3, 5)), |
| stride=st.sampled_from((None, 1, 2)), |
| padding=st.integers(0, 2), |
| ceil_mode=st.sampled_from((True, False)), |
| count_include_pad=st.sampled_from((True, False)), |
| divisor_override=st.sampled_from((None, None))) |
| def test_avg_pool2d(self, X, kernel, stride, padding, ceil_mode, count_include_pad, divisor_override): |
| """ |
| Note: we currently cannot test the divisor_override, because quantized op will clamp the result |
| within range. However, the float op will not. |
| """ |
| X, (scale, zero_point, torch_type) = X |
| |
| assume(kernel // 2 >= padding) # Kernel cannot be overhanging! |
| iH, iW = X.shape[-2:] |
| oH = pool_output_shape(iH, kernel, padding, stride, 0) |
| assume(oH > 0) |
| oW = pool_output_shape(iW, kernel, padding, stride, 0) |
| assume(oW > 0) |
| X = torch.from_numpy(X) |
| qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, |
| dtype=torch_type) |
| X = qX.dequantize() |
| # Run reference on float tensor and then quantize the result for comparison |
| X_ref = torch.nn.functional.avg_pool2d( |
| X, kernel_size=kernel, stride=stride, padding=padding, |
| ceil_mode=ceil_mode, count_include_pad=count_include_pad, divisor_override=divisor_override) |
| ops_under_test = { |
| "nn.functional": torch.nn.functional.avg_pool2d, |
| "nn.quantized.functional": torch.nn.quantized.functional.avg_pool2d |
| } |
| error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}" |
| for name, op in ops_under_test.items(): |
| qX_hat = op(qX, kernel_size=kernel, stride=stride, padding=padding, ceil_mode=ceil_mode, |
| count_include_pad=count_include_pad, divisor_override=divisor_override) |
| qX_ref = torch.quantize_per_tensor(X_ref, scale=qX_hat.q_scale(), zero_point=qX_hat.q_zero_point(), |
| dtype=torch_type) |
| |
| self.assertEqual(qX_ref.int_repr().to(torch.double), qX_hat.int_repr().to(torch.double), prec=1.0, |
| message=error_message.format(name, qX_hat.int_repr(), qX_ref.int_repr())) |
| self.assertEqual(scale, qX_hat.q_scale(), |
| message=error_message.format(name + '.scale', scale, qX_hat.q_scale())) |
| self.assertEqual(zero_point, qX_hat.q_zero_point(), |
| message=error_message.format(name + '.zero_point', scale, |
| qX_hat.q_zero_point())) |
| |
| @no_deadline |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4, |
| min_side=5, max_side=10), |
| qparams=hu.qparams(dtypes=torch.qint8)), |
| kernel=st.sampled_from((4, 5)), |
| stride=st.sampled_from((None, 1, 2)), |
| padding=st.integers(0, 2), |
| ceil_mode=st.sampled_from((True, False)), |
| count_include_pad=st.sampled_from((True, False)), |
| divisor_override=st.sampled_from((None, None))) |
| def test_avg_pool2d_nhwc(self, X, kernel, stride, padding, ceil_mode, count_include_pad, divisor_override): |
| """ |
| Note: 1) we currently cannot test the divisor_override, because quantized op will clamp the result |
| within range. However, the float op will not. |
| 2) we cannot test the qint32, since the float point precision is much lower than int32 for big number, |
| which will make the test be very flaky. |
| """ |
| X, (scale, zero_point, torch_type) = X |
| H, W = X.shape[-2:] |
| |
| if X.shape[1] < 176: |
| X = np.repeat(X, 176 / X.shape[1], 1) |
| |
| X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 1])) |
| |
| qX = torch.quantize_per_tensor(torch.from_numpy(X_nchw), scale=scale, |
| zero_point=zero_point, dtype=torch_type).permute([0, 3, 1, 2]) |
| X = qX.dequantize() |
| |
| # Run reference on int_repr + round to avoid double rounding error. |
| X_ref = torch.nn.functional.avg_pool2d( |
| X, kernel_size=kernel, stride=stride, padding=padding, |
| ceil_mode=ceil_mode, count_include_pad=count_include_pad, divisor_override=divisor_override) |
| |
| self.assertTrue(qX.stride() != sorted(qX.stride())) |
| ops_under_test = { |
| "nn.functional": torch.nn.functional.avg_pool2d, |
| "nn.quantized.functional": torch.nn.quantized.functional.avg_pool2d |
| } |
| error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}" |
| for name, op in ops_under_test.items(): |
| X_hat = op(qX, kernel_size=kernel, stride=stride, padding=padding, ceil_mode=ceil_mode, |
| count_include_pad=count_include_pad, divisor_override=divisor_override) |
| self.assertTrue(X_hat.stride() != sorted(X_hat.stride())) |
| qX_ref = torch.quantize_per_tensor(X_ref, scale=X_hat.q_scale(), zero_point=X_hat.q_zero_point(), |
| dtype=torch_type) |
| |
| self.assertEqual(qX_ref.int_repr().to(torch.double), X_hat.int_repr().to(torch.double), prec=1.0, |
| message=error_message.format(name, X_hat.int_repr(), qX_ref.int_repr())) |
| self.assertEqual(scale, X_hat.q_scale(), |
| message=error_message.format(name + '.scale', scale, X_hat.q_scale())) |
| self.assertEqual(zero_point, X_hat.q_zero_point(), |
| message=error_message.format(name + '.zero_point', scale, |
| X_hat.q_zero_point())) |
| |
| @no_deadline |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4, |
| min_side=1, max_side=10), |
| qparams=hu.qparams(dtypes=torch.quint8)), |
| output_size_h=st.integers(1, 10), |
| output_size_w=st.integers(1, 10)) |
| def test_adaptive_avg_pool2d(self, X, output_size_h, output_size_w): |
| X, (scale, zero_point, torch_type) = X |
| |
| H, W = X.shape[-2:] |
| assume(output_size_h <= H) |
| assume(output_size_w <= W) |
| if output_size_h == output_size_w: |
| output_size = output_size_h |
| else: |
| output_size = (output_size_h, output_size_w) |
| X = torch.from_numpy(X) |
| qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, |
| dtype=torch_type) |
| |
| # Run reference on int_repr + round to avoid double rounding error. |
| X_ref = torch.nn.functional.adaptive_avg_pool2d( |
| qX.int_repr().to(torch.float), output_size).round() |
| |
| ops_under_test = { |
| "nn.functional": torch.nn.functional.adaptive_avg_pool2d, |
| "nn.quantized.functional": |
| torch.nn.quantized.functional.adaptive_avg_pool2d |
| } |
| |
| error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}" |
| |
| for name, op in ops_under_test.items(): |
| qX_hat = op(qX, output_size=output_size) |
| self.assertEqual(X_ref, qX_hat.int_repr(), prec=1.0, |
| message=error_message.format(name, X_ref, qX_hat)) |
| self.assertEqual(scale, qX_hat.q_scale(), |
| message=error_message.format(name + '.scale', scale, qX_hat.q_scale())) |
| self.assertEqual(zero_point, qX_hat.q_zero_point(), |
| message=error_message.format(name + '.zero_point', scale, |
| qX_hat.q_zero_point())) |
| |
| """Tests adaptive average pool operation on NHWC quantized tensors.""" |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4, |
| min_side=1, max_side=10), |
| qparams=hu.qparams(dtypes=torch.qint8)), |
| output_size_h=st.integers(1, 10), |
| output_size_w=st.integers(1, 10)) |
| def test_adaptive_avg_pool2d_nhwc(self, X, output_size_h, output_size_w): |
| X, (scale, zero_point, torch_type) = X |
| H, W = X.shape[-2:] |
| assume(output_size_h <= H) |
| assume(output_size_w <= W) |
| if output_size_h == output_size_w: |
| output_size = output_size_h |
| else: |
| output_size = (output_size_h, output_size_w) |
| |
| if X.shape[1] < 176: |
| X = np.repeat(X, 176 / X.shape[1], 1) |
| |
| X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 1])) |
| X = torch.from_numpy(X_nchw).permute([0, 3, 1, 2]) |
| qX = torch.quantize_per_tensor(torch.from_numpy(X_nchw), scale=scale, |
| zero_point=zero_point, dtype=torch_type).permute([0, 3, 1, 2]) |
| |
| # Run reference on int_repr + round to avoid double rounding error. |
| X_ref = torch.nn.functional.adaptive_avg_pool2d(qX.int_repr().to(torch.double), output_size).round() |
| |
| self.assertTrue(qX.stride() != sorted(qX.stride())) |
| |
| ops_under_test = { |
| "nn.functional": torch.nn.functional.adaptive_avg_pool2d, |
| "nn.quantized.functional": |
| torch.nn.quantized.functional.adaptive_avg_pool2d |
| } |
| error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}" |
| for name, op in ops_under_test.items(): |
| X_hat = op(qX, output_size=output_size) |
| self.assertTrue(X_hat.stride() != sorted(X_hat.stride())) |
| self.assertEqual(X_ref, X_hat.int_repr(), prec=1.0, |
| message="{} results are off".format(name)) |
| self.assertEqual(scale, X_hat.q_scale(), |
| message=error_message.format(name + '.scale', scale, X_hat.q_scale())) |
| self.assertEqual(zero_point, X_hat.q_zero_point(), |
| message=error_message.format(name + '.zero_point', scale, |
| X_hat.q_zero_point())) |
| |
| @no_deadline |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4, |
| min_side=1, max_side=10), |
| qparams=hu.qparams()), |
| k=st.integers(1, 10), |
| dim=st.integers(1, 4), |
| largest=st.booleans(), |
| sorted=st.booleans()) |
| def test_qtopk(self, X, k, dim, largest, sorted): |
| X, (scale, zero_point, torch_type) = X |
| qX = torch.quantize_per_tensor(torch.from_numpy(X), scale, zero_point, torch_type) |
| assume(dim < X.ndim) |
| assume(k < X.shape[dim]) |
| |
| unquantized_out = torch.topk(qX.dequantize(), k, dim=dim, largest=largest, sorted=sorted) |
| |
| values = torch.quantize_per_tensor(torch.from_numpy(X), scale, zero_point, torch_type) |
| indices = torch.tensor(torch.from_numpy(X)).long() |
| |
| quantized_out = torch.topk(qX, k, dim=dim, largest=largest, sorted=sorted) |
| |
| assert(len(unquantized_out) == len(quantized_out)) |
| torch.testing.assert_allclose(quantized_out[0].dequantize(), unquantized_out[0]) |
| torch.testing.assert_allclose(quantized_out[1], unquantized_out[1]) |
| |
| @no_deadline |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4, |
| min_side=1, max_side=10), |
| qparams=hu.qparams()), |
| k=st.integers(1, 10), |
| dim=st.integers(1, 4), |
| largest=st.booleans(), |
| sorted=st.booleans()) |
| def test_qtopk_nhwc(self, X, k, dim, largest, sorted): |
| # X is NHWC, we permute to view as NCHW but keep NHWC in memory |
| X, (scale, zero_point, torch_type) = X |
| qX = torch.quantize_per_tensor(torch.from_numpy(X), scale, zero_point, torch_type).permute([0, 3, 1, 2]) |
| X = np.transpose(X, [0, 3, 1, 2]) |
| assume(dim < X.ndim) |
| assume(k < X.shape[dim]) |
| |
| unquantized_out = torch.topk(qX.dequantize(), k, dim=dim, largest=largest, sorted=sorted) |
| |
| values = torch.quantize_per_tensor(torch.from_numpy(X), scale, zero_point, torch_type) |
| indices = torch.tensor(torch.from_numpy(X)).long() |
| |
| quantized_out = torch.topk(qX, k, dim=dim, largest=largest, sorted=sorted) |
| |
| assert(len(unquantized_out) == len(quantized_out)) |
| torch.testing.assert_allclose(quantized_out[0].dequantize(), unquantized_out[0]) |
| torch.testing.assert_allclose(quantized_out[1], unquantized_out[1]) |
| |
| |
| """Tests quantize concatenation (both fused and not).""" |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4, |
| min_side=1, max_side=10), |
| qparams=hu.qparams()), |
| num=st.integers(1, 4), |
| dim=st.integers(1, 4), |
| relu=st.booleans()) |
| def test_cat(self, X, num, dim, relu): |
| tensors_q = [] |
| tensors_ref = [] |
| X, (scale, zero_point, torch_type) = X |
| assume(dim < X.ndim) |
| X = torch.from_numpy(X) |
| new_shape = np.array(X.shape) |
| new_shape[dim] = 0 |
| for idx in range(num): |
| tensors_q.append(torch.quantize_per_tensor(X, scale, zero_point, |
| torch_type)) |
| tensors_ref.append(X) |
| new_shape[dim] += tensors_ref[-1].shape[dim] |
| |
| cat_ref = torch.cat(tensors_ref, dim=dim) |
| cat_ref = torch.quantize_per_tensor(cat_ref, scale, zero_point, torch_type) |
| cat_ref = cat_ref.dequantize() |
| |
| if relu: |
| cat_ref = F.relu(cat_ref) |
| q_cat_op = torch.ops.quantized.cat_relu |
| q_cat_out_op = torch.ops.quantized.cat_relu_out |
| else: |
| q_cat_op = torch.ops.quantized.cat |
| q_cat_out_op = torch.ops.quantized.cat_out |
| |
| cat_q = q_cat_op(tensors_q, dim=dim, scale=scale, |
| zero_point=zero_point) |
| cat_q = cat_q.dequantize() |
| np.testing.assert_equal(cat_ref.numpy(), cat_q.numpy()) |
| |
| cat_q_out = torch._empty_affine_quantized( |
| list(new_shape), scale=scale, |
| zero_point=zero_point, dtype=torch_type) |
| q_cat_out_op(tensors_q, dim=dim, out=cat_q_out) |
| cat_q_out = cat_q_out.dequantize() |
| np.testing.assert_equal(cat_ref.numpy(), cat_q_out.numpy()) |
| |
| # Test the cat on per-channel quantized tensor. |
| ch_axis = 1 |
| scales = torch.from_numpy(np.array([1.0] * X.shape[ch_axis])) |
| scales = scales.to(torch.float64) |
| zero_points = torch.from_numpy(np.array([0] * X.shape[ch_axis])) |
| zero_points = zero_points.to(torch.long) |
| tensors_q[0] = torch.quantize_per_channel( |
| X, scales, zero_points, axis=ch_axis, dtype=torch_type) |
| with self.assertRaisesRegex(RuntimeError, "supported.*cat"): |
| cat_q = q_cat_op(tensors_q, dim=ch_axis, scale=scale, |
| zero_point=zero_point) |
| |
| @no_deadline |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4, |
| min_side=5, max_side=10), |
| qparams=hu.qparams()), |
| size=st.sampled_from((1, 3, 5, 10)), |
| mode=st.sampled_from(("bilinear", "nearest")), |
| scale_factor=st.sampled_from((None, 1.5, 2.0)), |
| align_corners=st.sampled_from((True, False)), |
| nhwc_layout=st.sampled_from((True, False))) |
| def test_interpolate(self, X, size, mode, scale_factor, align_corners, nhwc_layout): |
| """ |
| This test cover upsample_nearest2d and upsample_bilinear2d |
| """ |
| X, (scale, zero_point, torch_type) = X |
| H, W = X.shape[-2:] |
| |
| if scale_factor is not None: |
| size = None |
| if mode == "nearest": |
| align_corners = None |
| |
| if nhwc_layout: |
| if X.shape[1] < 176: |
| X = np.repeat(X, 176 / X.shape[1], 1) |
| |
| X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 1])) |
| X = torch.from_numpy(X_nchw).permute([0, 3, 1, 2]) |
| |
| qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, |
| dtype=torch_type).permute([0, 3, 1, 2]) |
| else: |
| X = torch.from_numpy(X) |
| qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, |
| dtype=torch_type) |
| |
| X_ref = torch.nn.functional.interpolate( |
| qX.int_repr().to(torch.float), size=size, scale_factor=scale_factor, |
| mode=mode, align_corners=align_corners) |
| |
| ops_under_test = { |
| "nn.functional": torch.nn.functional.interpolate, |
| "nn.quantized.functional": torch.nn.quantized.functional.interpolate |
| } |
| error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}" |
| for name, op in ops_under_test.items(): |
| qX_hat = op(qX, size=size, scale_factor=scale_factor, |
| mode=mode, align_corners=align_corners) |
| self.assertEqual(X_ref, qX_hat.int_repr(), prec=1.0, |
| message="{} results are off".format(name, qX_hat.int_repr(), X_ref)) |
| self.assertEqual(scale, qX_hat.q_scale(), |
| message=error_message.format(name + '.scale', scale, qX_hat.q_scale())) |
| self.assertEqual(zero_point, qX_hat.q_zero_point(), |
| message=error_message.format(name + '.zero_point', scale, |
| qX_hat.q_zero_point())) |
| |
| """Tests quantize concatenation (both fused and not).""" |
| @no_deadline |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4, |
| min_side=1, max_side=10), |
| qparams=hu.qparams()), |
| relu=st.booleans()) |
| def test_cat_nhwc(self, X, relu): |
| # X is NHWC |
| X, (scale, zero_point, torch_type) = X |
| |
| # Tile out X so # channels is > 64 |
| X = np.repeat(X, 70 / X.shape[3], 3) |
| X = torch.from_numpy(np.ascontiguousarray(X)) |
| Y = X.clone() |
| Y = torch.from_numpy(np.ascontiguousarray(Y)) |
| # Here, we quantize and get quantized tensors in NHWC for both dims and strides. The |
| # permute switches it so that the tensor looks like NCHW but it laid out in memory as |
| # NHWC. |
| qX = torch.quantize_per_tensor(X, scale, zero_point, torch_type).permute([0, 3, 1, 2]) |
| qY = torch.quantize_per_tensor(Y, scale, zero_point, torch_type).permute([0, 3, 1, 2]) |
| |
| ref = torch.cat([qX.dequantize(), qY.dequantize()], dim=1) |
| if relu: |
| ref[ref < 0] = 0.0 |
| ref = torch.quantize_per_tensor(ref, scale=scale, zero_point=zero_point, dtype=torch_type) |
| |
| if relu: |
| out = torch.ops.quantized.cat_relu( |
| [qX, qY], dim=1, scale=scale, zero_point=zero_point) |
| else: |
| out = torch.ops.quantized.cat([qX, qY], dim=1, scale=scale, zero_point=zero_point) |
| |
| torch.testing.assert_allclose(out.dequantize(), ref.dequantize()) |
| self.assertNotEqual(out.stride(), sorted(out.stride())) |
| |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=3, |
| min_side=1, max_side=2), |
| qparams=hu.qparams()), |
| dim=st.integers(1, 2)) |
| def test_mean(self, X, dim): |
| X, (scale, zero_point, torch_type) = X |
| qX = torch.quantize_per_tensor(torch.tensor(X).float(), scale, zero_point, torch_type) |
| |
| Y = torch.mean(qX.dequantize(), dim) |
| Y = torch.quantize_per_tensor(Y, scale, zero_point, torch_type).dequantize() |
| qY = torch.mean(qX, dim) |
| |
| self.assertEqual(Y, qY.dequantize()) |
| |
| """Tests the correctness of the quantized equal op.""" |
| @given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5), |
| qparams=hu.qparams()), |
| X2=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5), |
| qparams=hu.qparams()), |
| X_per_channel=st.booleans(), |
| X2_per_channel=st.booleans()) |
| def test_equal(self, X, X2, X_per_channel, X2_per_channel): |
| X, X_params = X |
| (scale, zero_point, torch_type) = X_params |
| X2, X2_params = X2 |
| (scale2, zero_point2, torch_type2) = X2_params |
| |
| X = torch.from_numpy(X) |
| if X_per_channel: |
| X_scheme = 'per_channel' |
| channels = X.shape[-1] |
| qX = torch.quantize_per_channel( |
| X, |
| scales=torch.tensor([scale] * channels), |
| zero_points=torch.tensor([zero_point] * channels), |
| dtype=torch_type, |
| axis=X.ndim - 1) |
| else: |
| X_scheme = 'per_tensor' |
| qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, |
| dtype=torch_type) |
| X2 = torch.from_numpy(X2) |
| if X2_per_channel: |
| X2_scheme = 'per_channel' |
| channels = X2.shape[-1] |
| qX2 = torch.quantize_per_channel( |
| X2, |
| scales=torch.tensor([scale2] * channels), |
| zero_points=torch.tensor([zero_point2] * channels), |
| dtype=torch_type2, |
| axis=X2.ndim - 1) |
| else: |
| X2_scheme = 'per_tensor' |
| qX2 = torch.quantize_per_tensor(X2, scale=scale2, zero_point=zero_point2, |
| dtype=torch_type2) |
| |
| def equal_ref(qX, qX2): |
| if qX.qscheme() != qX2.qscheme(): |
| return False |
| if qX.shape != qX2.shape: |
| return False |
| if qX.dtype != qX2.dtype: |
| return False |
| if qX.qscheme() == torch.per_tensor_affine: |
| if qX.q_scale() != qX2.q_scale(): |
| return False |
| if qX.q_zero_point() != qX2.q_zero_point(): |
| return False |
| elif qX.qscheme() == torch.per_channel_affine: |
| if (qX.q_per_channel_scales() != |
| qX2.q_per_channel_scales()).any(): |
| return False |
| if (qX.q_per_channel_zero_points() != |
| qX2.q_per_channel_zero_points()).any(): |
| return False |
| else: |
| raise NotImplementedError("Don't know what to do with", |
| qX.qscheme()) |
| if (qX.int_repr().to(float) != qX2.int_repr().to(float)).any(): |
| return False |
| return True |
| |
| self.assertEqual(qX.equal(qX), equal_ref(qX, qX)) |
| self.assertEqual(qX.equal(qX2), equal_ref(qX, qX2)) |
| |
| |
| @unittest.skipUnless('fbgemm' in torch.backends.quantized.supported_engines, |
| " Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs" |
| " with instruction set support avx2 or newer.") |
| class TestDynamicQuantizedLinear(TestCase): |
| """Tests the correctness of the dynamic quantized linear and linear_relu op.""" |
| @no_deadline |
| @given( |
| batch_size=st.integers(1, 4), |
| input_channels=st.integers(16, 32), |
| output_channels=st.integers(4, 8), |
| use_bias=st.booleans(), |
| use_relu=st.booleans(), |
| use_multi_dim_input=st.booleans(), |
| use_channelwise=st.booleans()) |
| def test_qlinear(self, batch_size, input_channels, output_channels, |
| use_bias, use_relu, use_multi_dim_input, use_channelwise): |
| qlinear_prepack = torch.ops.quantized.linear_prepack |
| if use_relu: |
| qlinear_dynamic = torch.ops.quantized.linear_relu_dynamic |
| else: |
| qlinear_dynamic = torch.ops.quantized.linear_dynamic |
| |
| if use_multi_dim_input: |
| batch_size *= 3 # Test the multi-dim input tensor |
| |
| X_scale = 1.0 |
| X_zp = 0 |
| X_value_min = 0 |
| X_value_max = 255 |
| X_q0 = np.round(np.random.rand(batch_size, input_channels) * |
| (X_value_max - X_value_min) |
| + X_value_min |
| ).astype(np.uint8) |
| X_q0 = np.round(np.random.rand(batch_size, input_channels) * |
| (X_value_max - X_value_min) + X_value_min).astype(np.uint8) |
| X_q0[0, 0] = X_value_min |
| X_q0[0, 1] = X_value_max |
| |
| # W_scale = 1.0 |
| # W_zp = 0 |
| W_scales = np.ones(output_channels) |
| W_zps = np.zeros(output_channels).astype(np.int) |
| W_value_min = -128 |
| W_value_max = 127 |
| W_q0 = np.round( |
| np.random.rand(output_channels, input_channels) |
| * (W_value_max - W_value_min) |
| + W_value_min |
| ).astype(np.int8) |
| W_q0[0, 0] = W_value_min |
| W_q0[1, 0] = W_value_max |
| |
| b_value_min = -10 |
| b_value_max = 10 |
| b_q0 = np.round( |
| np.random.rand(output_channels) * |
| (b_value_max - b_value_min) + b_value_min |
| ).astype(np.int32) if use_bias else None |
| |
| avoid_vpmaddubsw_overflow_linear( |
| batch_size, |
| input_channels, |
| output_channels, |
| X_q0, |
| X_value_min, |
| X_value_max, |
| W_q0, |
| W_value_min, |
| W_value_max, |
| ) |
| |
| X_fp32 = torch.from_numpy(_dequantize(X_q0, X_scale, X_zp)).to(dtype=torch.float) |
| if use_multi_dim_input: |
| X_fp32 = X_fp32.view(3, int(batch_size / 3), input_channels) |
| |
| # W_scale, W_zp = _calculate_dynamic_qparams(W_fp32, torch.qint8) |
| # We currently only check the case where W_scale = 1.0, W_zp = 0. |
| |
| if use_channelwise: |
| W_fp32 = torch.from_numpy(_dequantize(W_q0, W_scales.reshape( |
| (-1, 1)), W_zps.reshape((-1, 1)))).to(dtype=torch.float) |
| W_q = torch.quantize_per_channel(W_fp32, scales=torch.from_numpy(W_scales), |
| zero_points=torch.from_numpy(W_zps), axis=0, dtype=torch.qint8) |
| b_fp32 = torch.from_numpy( |
| _dequantize(b_q0, X_scale * W_scales, 0) |
| ).to(dtype=torch.float) if use_bias else None |
| else: |
| W_fp32 = torch.from_numpy(_dequantize( |
| W_q0, W_scales[0], W_zps[0])).to(dtype=torch.float) |
| W_q = torch.quantize_per_tensor(W_fp32, scale=W_scales[0], zero_point=( |
| W_zps[0].astype(int).item()), dtype=torch.qint8) |
| b_fp32 = torch.from_numpy( |
| _dequantize(b_q0, X_scale * int(W_scales[0].item()), 0) |
| ).to(dtype=torch.float) if use_bias else None |
| |
| # Observe X_fp32 and determine X_scale and X_zero_point, this should match |
| # internals of dynamic linear. |
| X_scale, X_zp = _calculate_dynamic_qparams(X_fp32, torch.quint8) |
| X_q = torch.quantize_per_tensor(X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8) |
| |
| # Weight prepacking operator for dynamic quantized Linear |
| W_prepack = qlinear_prepack(W_q, b_fp32) |
| # Dynamic quantized Linear operator with prepacked weight |
| Y_fp32 = qlinear_dynamic(X_q.dequantize(), W_prepack) |
| # Y_fp32 = qlinear_dynamic(X_fp32, W_prepack, b_fp32) |
| |
| Y_fp32_ref = F.linear(X_q.dequantize(), W_q.dequantize(), b_fp32) |
| # Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32) |
| # if use_multi_dim_input: |
| # Y_fp32_ref = Y_fp32_ref.view(3, int(batch_size / 3), output_channels) |
| |
| if use_relu: |
| Y_fp32_ref[Y_fp32_ref < 0.0] = 0.0 |
| |
| self.assertEqual(Y_fp32, Y_fp32_ref, |
| message="torch.ops.quantized.linear_dynamic (fbgemm) results are off") |
| |
| class TestQuantizedLinear(unittest.TestCase): |
| """Tests the correctness of the quantized linear and linear_relu op.""" |
| @no_deadline |
| @given(batch_size=st.integers(1, 4), |
| input_channels=st.integers(16, 32), |
| output_channels=st.integers(4, 8), |
| use_bias=st.booleans(), |
| use_relu=st.booleans(), |
| use_multi_dim_input=st.booleans(), |
| use_channelwise=st.booleans(), |
| qengine=st.sampled_from(("qnnpack", "fbgemm"))) |
| def test_qlinear(self, batch_size, input_channels, output_channels, use_bias, |
| use_relu, use_multi_dim_input, use_channelwise, qengine): |
| if qengine not in torch.backends.quantized.supported_engines: |
| return |
| decimal_val = 4 |
| if qengine == 'qnnpack': |
| if IS_PPC or TEST_WITH_UBSAN: |
| return |
| use_channelwise = False |
| use_multi_dim_input = False |
| # QNNPACK supports uint8 in the kernels. In the op we shift the int8 |
| # weight values to uint8 to be on par with fbgemm. However, this causes |
| # some rounding issues in rare cases. So, we relax the check to allow |
| # off by one results. |
| decimal_val = 0 |
| |
| with override_quantized_engine(qengine): |
| qlinear_prepack = torch.ops.quantized.linear_prepack |
| if use_relu: |
| qlinear = torch.ops.quantized.linear_relu |
| else: |
| qlinear = torch.ops.quantized.linear |
| if use_multi_dim_input: |
| batch_size *= 3 # Test the multi-dim input tensor |
| X_scale = 1.5 |
| X_zp = 5 |
| X_value_min = 0 |
| X_value_max = 225 |
| X_q0 = np.round( |
| np.random.rand(batch_size, input_channels) * |
| (X_value_max - X_value_min) |
| + X_value_min |
| ).astype(np.uint8) |
| W_scales = np.random.rand(output_channels) |
| W_zps = np.round(np.random.rand(output_channels) * 100 - 50).astype(np.int) |
| W_value_min = -128 |
| W_value_max = 127 |
| W_q0 = np.round( |
| np.random.rand(output_channels, input_channels) |
| * (W_value_max - W_value_min) |
| + W_value_min |
| ).astype(np.int8) |
| b_value_min = -10 |
| b_value_max = 10 |
| b_q0 = np.round( |
| np.random.rand(output_channels) * |
| (b_value_max - b_value_min) + b_value_min |
| ).astype(np.int32) if use_bias else None |
| avoid_vpmaddubsw_overflow_linear( |
| batch_size, |
| input_channels, |
| output_channels, |
| X_q0, |
| X_value_min, |
| X_value_max, |
| W_q0, |
| W_value_min, |
| W_value_max, |
| ) |
| X = torch.from_numpy(_dequantize( |
| X_q0, X_scale, X_zp)).to(dtype=torch.float) |
| X_q = torch.quantize_per_tensor( |
| X, scale=X_scale, zero_point=X_zp, dtype=torch.quint8) |
| if use_channelwise: |
| W = torch.from_numpy(_dequantize(W_q0, W_scales.reshape( |
| (-1, 1)), W_zps.reshape((-1, 1)))).to(dtype=torch.float) |
| W_q = torch.quantize_per_channel(W, scales=torch.from_numpy(W_scales), |
| zero_points=torch.from_numpy(W_zps), axis=0, dtype=torch.qint8) |
| b = torch.from_numpy(_dequantize( |
| b_q0, X_scale * W_scales, 0)).to(dtype=torch.float) if use_bias else None |
| b_q = torch.quantize_per_channel(b, scales=torch.from_numpy(X_scale * W_scales), |
| zero_points=torch.zeros(output_channels, dtype=torch.long), |
| axis=0, dtype=torch.qint32) if use_bias else None |
| else: |
| W = torch.from_numpy(_dequantize( |
| W_q0, W_scales[0], W_zps[0])).to(dtype=torch.float) |
| W_q = torch.quantize_per_tensor(W, scale=W_scales[0], zero_point=( |
| W_zps[0].astype(int).item()), dtype=torch.qint8) |
| b = torch.from_numpy(_dequantize( |
| b_q0, X_scale * (W_scales[0].item()), 0)).to(dtype=torch.float) if use_bias else None |
| b_q = torch.quantize_per_tensor( |
| b, scale=X_scale * (W_scales[0].item()), zero_point=0, dtype=torch.qint32) if use_bias else None |
| # Compare X_scale * W_scale * input_channels * X_value_max * W_value_max with |
| # Y_scale * 255 (max for uint8). |
| Y_scale = 125.1234 |
| Y_zp = 5 |
| # Weight prepacking operator for quantized Linear |
| float_bias = b if use_bias else None |
| W_prepack = qlinear_prepack(W_q, float_bias) |
| if use_multi_dim_input: |
| X_q = X_q.view(3, int(batch_size / 3), input_channels) |
| # Quantized Linear operator with prepacked weight |
| Y_q = qlinear(X_q, W_prepack, Y_scale, Y_zp) |
| if not use_channelwise: |
| # Test the per-tensor quantization only |
| # Reference quantized Linear operator |
| Y_q_ref = qlinear_ref(X_q0, X_scale, X_zp, W_q0, |
| W_scales[0], W_zps[0], b_q0, Y_scale, Y_zp) |
| if use_relu: |
| Y_q_ref[Y_q_ref < Y_zp] = Y_zp |
| if use_multi_dim_input: |
| Y_q_ref = np.reshape( |
| Y_q_ref, (3, int(batch_size / 3), output_channels)) |
| # Assert equal |
| np.testing.assert_array_almost_equal(Y_q_ref, Y_q.int_repr().numpy(), decimal=decimal_val) |
| # Test both per-tensor and per-channel quantization |
| # Reference quantized result from PyTorch Linear operator |
| W_fp32 = W_q.dequantize().to(dtype=torch.float) |
| X_fp32 = X_q.dequantize().to(dtype=torch.float) |
| b_fp32 = b_q.dequantize().to(dtype=torch.float) if use_bias else None |
| Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32) |
| if use_relu: |
| Y_fp32_ref[Y_fp32_ref < 0.0] = 0.0 |
| Y_q_ref2 = torch.quantize_per_tensor( |
| Y_fp32_ref, Y_scale, Y_zp, torch.quint8) |
| # Assert equal |
| np.testing.assert_array_almost_equal( |
| Y_q_ref2.int_repr().numpy(), Y_q.int_repr().numpy(), decimal=decimal_val) |
| |
| """Tests the correctness of the quantized::linear_unpack op.""" |
| @given(W=hu.tensor(shapes=hu.array_shapes(2, 2,), |
| qparams=hu.qparams(dtypes=torch.qint8)), |
| use_channelwise=st.booleans(), |
| qengine=st.sampled_from(("qnnpack", "fbgemm"))) |
| def test_qlinear_unpack(self, W, use_channelwise, qengine): |
| if qengine not in torch.backends.quantized.supported_engines: |
| return |
| if qengine == 'qnnpack': |
| if IS_PPC or TEST_WITH_UBSAN: |
| return |
| use_channelwise = False |
| |
| with override_quantized_engine(qengine): |
| W, (W_scale, W_zp, torch_type) = W |
| if use_channelwise: |
| output_channels = W.shape[0] |
| W_scales = torch.rand(output_channels).to(torch.double) |
| W_zps = torch.round(torch.rand(output_channels) |
| * 100 - 50).to(torch.int64) |
| qlinear_prepack = torch.ops.quantized.linear_prepack |
| qlinear_unpack = torch.ops.quantized.linear_unpack |
| |
| W = torch.from_numpy(W) |
| if use_channelwise: |
| W_q = torch.quantize_per_channel( |
| W, W_scales, W_zps, 0, dtype=torch_type) |
| else: |
| W_q = torch.quantize_per_tensor(W, scale=W_scale, zero_point=W_zp, |
| dtype=torch_type) |
| # Weight prepacking operator for quantized Linear |
| W_prepack = qlinear_prepack(W_q) |
| # Weight unpack operator for quantized Linear (Used for serialization) |
| W_q_origin = qlinear_unpack(W_prepack)[0] |
| # Assert equal |
| np.testing.assert_equal(W_q.int_repr(), W_q_origin.int_repr().numpy()) |
| if use_channelwise: |
| np.testing.assert_array_almost_equal(np.float32(W_q.q_per_channel_scales().numpy()), |
| np.float32( |
| W_q_origin.q_per_channel_scales().numpy()), |
| decimal=4) |
| np.testing.assert_equal(W_q.q_per_channel_zero_points( |
| ).numpy(), W_q_origin.q_per_channel_zero_points().numpy()) |
| else: |
| np.testing.assert_equal(np.float32( |
| W_q.q_scale()), np.float32(W_q_origin.q_scale())) |
| np.testing.assert_equal( |
| W_q.q_zero_point(), W_q_origin.q_zero_point()) |
| |
| class TestQuantizedConv(unittest.TestCase): |
| """Tests the correctness of quantized convolution op.""" |
| @given(batch_size=st.integers(1, 3), |
| input_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]), |
| height=st.integers(10, 16), |
| width=st.integers(7, 14), |
| output_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]), |
| groups=st.integers(1, 3), |
| kernel_h=st.integers(1, 7), |
| kernel_w=st.integers(1, 7), |
| stride_h=st.integers(1, 2), |
| stride_w=st.integers(1, 2), |
| pad_h=st.integers(0, 2), |
| pad_w=st.integers(0, 2), |
| dilation=st.integers(1, 2), |
| X_scale=st.floats(1.2, 1.6), |
| X_zero_point=st.integers(0, 4), |
| W_scale=st.lists(st.floats(0.2, 1.6), min_size=1, max_size=2), |
| W_zero_point=st.lists(st.integers(-5, 5), min_size=1, max_size=2), |
| Y_scale=st.floats(4.2, 5.6), |
| Y_zero_point=st.integers(0, 4), |
| use_bias=st.booleans(), |
| use_relu=st.booleans(), |
| use_channelwise=st.booleans(), |
| qengine=st.sampled_from(("qnnpack", "fbgemm"))) |
| def test_qconv( |
| self, |
| batch_size, |
| input_channels_per_group, |
| height, |
| width, |
| output_channels_per_group, |
| groups, |
| kernel_h, |
| kernel_w, |
| stride_h, |
| stride_w, |
| pad_h, |
| pad_w, |
| dilation, |
| X_scale, |
| X_zero_point, |
| W_scale, |
| W_zero_point, |
| Y_scale, |
| Y_zero_point, |
| use_bias, |
| use_relu, |
| use_channelwise, |
| qengine |
| ): |
| if qengine not in torch.backends.quantized.supported_engines: |
| return |
| if qengine == 'qnnpack': |
| if IS_PPC or TEST_WITH_UBSAN: |
| return |
| use_channelwise = False |
| |
| with override_quantized_engine(qengine): |
| qconv = torch.ops.quantized.conv2d |
| if use_relu: |
| qconv = torch.ops.quantized.conv2d_relu |
| qconv_prepack = torch.ops.quantized.conv_prepack |
| # C |
| input_channels = input_channels_per_group * groups |
| # K |
| output_channels = output_channels_per_group * groups |
| dilation_h = dilation_w = dilation |
| # Padded input size should be at least as big as dilated kernel |
| assume(height + 2 * pad_h >= dilation_h * (kernel_h - 1) + 1) |
| assume(width + 2 * pad_w >= dilation_w * (kernel_w - 1) + 1) |
| W_scale = W_scale * output_channels |
| W_zero_point = W_zero_point * output_channels |
| # Resize W_scale and W_zero_points arrays equal to output_channels |
| W_scale = W_scale[:output_channels] |
| W_zero_point = W_zero_point[:output_channels] |
| # For testing, we use small values for weights and for activations so that no overflow occurs |
| # in vpmaddubsw instruction. If the overflow occurs in qconv implementation and if there is no overflow |
| # in reference we can't exactly match the results with reference. |
| # Please see the comment in qconv implementation file (aten/src/ATen/native/quantized/cpu/qconv.cpp) |
| # for more details. |
| W_value_min = -5 |
| W_value_max = 5 |
| # the operator expects them in the format (output_channels, input_channels/groups, kernel_h, kernel_w) |
| W_init = torch.from_numpy( |
| np.random.randint( |
| W_value_min, |
| W_value_max, |
| (output_channels, int(input_channels / groups), kernel_h, kernel_w)), |
| ) |
| b_init = torch.from_numpy(np.random.randint(0, 10, (output_channels,))) |
| stride = [stride_h, stride_w] |
| pad = [pad_h, pad_w] |
| dilation = [dilation_h, dilation_w] |
| X_value_min = 0 |
| X_value_max = 4 |
| X_init = torch.from_numpy(np.random.randint( |
| X_value_min, X_value_max, (batch_size, input_channels, height, width))) |
| X = X_scale * (X_init - X_zero_point).to(dtype=torch.float) |
| if use_channelwise: |
| W_scales_tensor = torch.tensor(W_scale, dtype=torch.float) |
| W_zero_points_tensor = torch.tensor(W_zero_point, dtype=torch.float) |
| W = W_scales_tensor.reshape(-1, 1, 1, 1) * (W_init.to(dtype=torch.float) - |
| W_zero_points_tensor.reshape(-1, 1, 1, 1)).to(dtype=torch.float) |
| b = X_scale * W_scales_tensor * (b_init - 0).to(dtype=torch.float) |
| else: |
| W = W_scale[0] * (W_init - W_zero_point[0]).to(dtype=torch.float) |
| b = X_scale * W_scale[0] * (b_init - 0).to(dtype=torch.float) |
| # Existing floating point conv operator |
| conv_op = torch.nn.Conv2d(input_channels, |
| output_channels, |
| (kernel_h, kernel_w), |
| (stride_h, stride_w), |
| (pad_h, pad_w), |
| (dilation_h, dilation_w), |
| groups) |
| # assign weights |
| conv_op.weight = torch.nn.Parameter(W, requires_grad=False) |
| conv_op.bias = torch.nn.Parameter(b, requires_grad=False) if use_bias else None |
| result_ref = conv_op(X) |
| if use_relu: |
| relu = torch.nn.ReLU() |
| result_ref = relu(result_ref) |
| # quantize reference results for comparision |
| result_ref_q = torch.quantize_per_tensor(result_ref, scale=Y_scale, zero_point=Y_zero_point, dtype=torch.quint8) |
| X_q = torch.quantize_per_tensor(X, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8) |
| if use_channelwise: |
| W_q = torch.quantize_per_channel(W, |
| W_scales_tensor, |
| W_zero_points_tensor.to(dtype=torch.long), |
| 0, |
| dtype=torch.qint8) |
| else: |
| W_q = torch.quantize_per_tensor(W, scale=W_scale[0], zero_point=W_zero_point[0], dtype=torch.qint8) |
| bias_float = b if use_bias else None |
| W_prepack = qconv_prepack(W_q, bias_float, stride, pad, dilation, groups) |
| Y_q = qconv( |
| X_q, |
| W_prepack, |
| stride, |
| pad, |
| dilation, |
| groups, |
| Y_scale, |
| Y_zero_point, |
| ) |
| # Make sure the results match |
| # assert_array_almost_equal compares using the following formula: |
| # abs(desired-actual) < 1.5 * 10**(-decimal) |
| # (https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_almost_equal.html) |
| # We use decimal = 0 to ignore off-by-1 differences between reference and |
| # test. Off-by-1 differences arise due to the order of round and |
| # zero_point addition operation, i.e., if addition followed by round is |
| # used by reference and round followed by addition is used by test, the |
| # results may differ by 1. |
| # For example, the result of round(2.5) + 1 is 3 while round(2.5 + 1) is 4 |
| # assuming the rounding mode is round-to-nearest, ties-to-even. |
| np.testing.assert_array_almost_equal(result_ref_q.int_repr().numpy(), Y_q.int_repr().numpy(), decimal=0) |
| |
| """Tests the correctness of the quantized::qconv_unpack op.""" |
| @given(X=hu.tensor_conv2d(min_batch=1, max_batch=3, |
| min_in_channels=1, max_in_channels=7, |
| min_out_channels=1, max_out_channels=7, |
| H_range=(6, 12), W_range=(6, 12), |
| kH_range=(3, 5), kW_range=(3, 5), |
| max_groups=4, |
| qparams=[hu.qparams(dtypes=torch.quint8, |
| zero_point_min=0, |
| zero_point_max=0), |
| hu.qparams(dtypes=torch.qint8, |
| zero_point_min=0, |
| zero_point_max=0), |
| hu.qparams(dtypes=torch.qint32, |
| zero_point_min=0, |
| zero_point_max=0)]), |
| strideH=st.integers(1, 3), strideW=st.integers(1, 3), |
| padH=st.integers(1, 2), padW=st.integers(1, 2), |
| channelwise=st.booleans(), |
| qengine=st.sampled_from(("qnnpack", "fbgemm"))) |
| def test_qconv_unpack(self, X, strideH, strideW, padH, padW, channelwise, qengine): |
| if qengine not in torch.backends.quantized.supported_engines: |
| return |
| if qengine == 'qnnpack': |
| if IS_PPC or TEST_WITH_UBSAN: |
| return |
| channelwise = False |
| with override_quantized_engine(qengine): |
| (inputs, filters, bias, groups) = X |
| inputs, (inputs_scale, inputs_zero_point, inputs_qtype) = inputs |
| filters, (filters_scale, filters_zero_point, filters_qtype) = filters |
| bias, (bias_scale, bias_zero_point, bias_qtype) = bias |
| if channelwise: |
| output_channels = filters.shape[0] |
| filters_scale = torch.tensor([filters_scale] * output_channels) |
| filters_zero_point = torch.tensor([filters_zero_point] * output_channels) |
| qconv_prepack = torch.ops.quantized.conv_prepack |
| qconv_unpack = torch.ops.quantized.conv_unpack |
| W = torch.from_numpy(filters).to(torch.float) |
| if channelwise: |
| W_q = torch.quantize_per_channel(W, |
| scales=filters_scale, |
| zero_points=filters_zero_point, |
| axis=0, |
| dtype=filters_qtype) |
| else: |
| W_q = torch.quantize_per_tensor(W, scale=filters_scale, zero_point=filters_zero_point, dtype=filters_qtype) |
| # Pack weights using weight packing operator |
| strides = [strideH, strideW] |
| paddings = [padH, padW] |
| dilations = [1, 1] |
| bias = torch.from_numpy(bias).to(torch.float) |
| W_packed = qconv_prepack(W_q, bias, strides, paddings, dilations, groups) |
| # Unpack weights weight unpacking operator (Used for serialization) |
| W_unpacked = qconv_unpack(W_packed)[0] |
| bias = qconv_unpack(W_packed)[1] |
| # Assert equal |
| np.testing.assert_equal(W_q.int_repr().numpy(), W_unpacked.int_repr().numpy()) |
| if channelwise: |
| np.testing.assert_array_almost_equal(np.float32(W_q.q_per_channel_scales().numpy()), |
| np.float32(W_unpacked.q_per_channel_scales().numpy()), |
| decimal=4) |
| np.testing.assert_equal(W_q.q_per_channel_zero_points().numpy(), W_unpacked.q_per_channel_zero_points().numpy()) |
| else: |
| np.testing.assert_equal(np.float32(W_q.q_scale()), np.float32(W_unpacked.q_scale())) |
| np.testing.assert_equal(W_q.q_zero_point(), W_unpacked.q_zero_point()) |
| |
| @unittest.skipUnless('qnnpack' in torch.backends.quantized.supported_engines, |
| "This Pytorch Build has not been built with QNNPACK") |
| @unittest.skipIf(IS_PPC, "QNNPACK is not currently supported on ppc64le") |
| @unittest.skipIf(TEST_WITH_UBSAN, |
| "QNNPACK does not play well with UBSAN at the moment," |
| " so we skip the test if we are in a UBSAN environment.") |
| class TestQNNPackOps(TestCase): |
| """Tests the correctness of the quantized::qnnpack_relu op.""" |
| @given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5), |
| qparams=hu.qparams(dtypes=torch.quint8, |
| zero_point_min=0, |
| zero_point_max=0))) |
| def test_qnnpack_relu(self, X): |
| with override_quantized_engine('qnnpack'): |
| X, (scale, zero_point, torch_type) = X |
| relu = torch.nn.functional.relu |
| X = torch.from_numpy(X) |
| Y = X.clone() |
| |
| qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, dtype=torch_type) |
| qY_hat = relu(qX) |
| |
| Y[Y < 0] = 0 |
| qY = torch.quantize_per_tensor(Y, scale=scale, zero_point=zero_point, dtype=torch_type) |
| self.assertEqual(qY, qY_hat) |
| |
| """Tests the correctness of the quantized::add (qnnpack) op.""" |
| @settings(suppress_health_check=(HealthCheck.filter_too_much,)) |
| @given(A=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5), |
| qparams=hu.qparams(dtypes=torch.quint8)), |
| zero_point=st.sampled_from([0, 2, 5, 15, 127]), |
| scale_A=st.sampled_from([0.001, 0.057, 0.889, 12.3]), |
| scale_B=st.sampled_from([0.008, 0.0821, 0.67, 7]), |
| scale_C=st.sampled_from([0.003, 0.07821, 0.457, 7.34]),) |
| def test_qnnpack_add(self, A, zero_point, scale_A, scale_B, scale_C): |
| with override_quantized_engine('qnnpack'): |
| A_temp = A |
| A, (scale_a, zero_point_A, torch_type) = A_temp |
| B, (scale_b, zero_point_B, torch_type) = A_temp |
| A = torch.from_numpy(A) |
| B = torch.from_numpy(B) |
| |
| assume(scale_A // scale_C >= 2**-14) |
| assume(scale_A // scale_C < 2**8) |
| assume(scale_B // scale_C >= 2**-14) |
| assume(scale_B // scale_C < 2**8) |
| |
| zero_point_C = 127 |
| qA = torch.quantize_per_tensor(A, scale=scale_A, zero_point=zero_point, |
| dtype=torch.quint8) |
| qB = torch.quantize_per_tensor(B, scale=scale_B, zero_point=zero_point, |
| dtype=torch.quint8) |
| |
| # Add ground truth |
| C = (qA.dequantize() + qB.dequantize()).numpy() |
| |
| qC = _quantize(C, scale_C, zero_point_C) |
| |
| qC_qnnp = torch.ops.quantized.add(qA, qB, scale_C, zero_point_C) |
| |
| np.testing.assert_equal(qC, qC_qnnp.int_repr(), |
| "Quantized addition failed.") |
| |
| Crelu = C.copy() |
| Crelu[C < 0] = 0 |
| qCrelu = torch.quantize_per_tensor(torch.from_numpy(Crelu), scale_C, |
| zero_point_C, dtype=torch.quint8) |
| qCrelu_hat = torch.ops.quantized.add_relu(qA, qB, scale=scale_C, zero_point=zero_point_C) |
| np.testing.assert_equal(qCrelu.int_repr().numpy(), qCrelu_hat.int_repr(), |
| "Quantized addition with ReLU failed.") |
| |
| A = torch.ones((0, 2), dtype=torch.float32) |
| qA = torch.quantize_per_tensor(A, scale=scale_A, zero_point=zero_point_A, |
| dtype=torch.quint8) |
| qC = torch.ops.quantized.add(qA, qA, scale_C, zero_point_C) |
| np.testing.assert_equal(qC.size(), qA.size(), |
| "Quantized addition with batch size 0 failed.") |
| |
| """Tests the correctness of quantized::qnnpack_maxpool2d op.""" |
| @given(A=hu.tensor(shapes=hu.array_shapes(4, 4, 3, 5), |
| qparams=hu.qparams(dtypes=torch.quint8)), |
| kernel=st.sampled_from([2, 4]), |
| stride=st.sampled_from([1, 2]), |
| padding=st.sampled_from([1, 2])) |
| def test_qnnpack_maxpool2d(self, A, kernel, stride, padding): |
| import torch.nn.functional as F |
| |
| with override_quantized_engine('qnnpack'): |
| A, (scale, zero_point, torch_type) = A |
| X = torch.from_numpy(A) |
| np_type = np.uint8 |
| dilation = 1 |
| |
| # Check constraints |
| assume(kernel // 2 >= padding) # Kernel cannot be overhanging! |
| |
| iH, iW = X.shape[-2:] |
| |
| oH = pool_output_shape(iH, kernel, padding, stride, dilation) |
| assume(oH > 0) |
| oW = pool_output_shape(iW, kernel, padding, stride, dilation) |
| assume(oW > 0) |
| |
| k = (kernel, kernel) |
| s = (stride, stride) |
| d = (dilation, dilation) |
| p = (padding, padding) |
| |
| q_max_pool = torch.ops.quantized.max_pool2d |
| |
| a = scale * (X - zero_point).to(dtype=torch.float) |
| qa = torch.quantize_per_tensor(a, scale=scale, zero_point=zero_point, |
| dtype=torch_type) |
| |
| a_ref = qa.dequantize() |
| |
| a_pool = F.max_pool2d(a_ref, kernel_size=k, stride=s, padding=p, |
| dilation=d) |
| |
| a_pool_nhwc = a_pool.permute([0, 2, 3, 1]) |
| |
| qa_pool = q_max_pool(qa, k, s, p, d, ceil_mode=False) |
| |
| qa_pool_int = qa_pool.dequantize() |
| np.testing.assert_equal(a_pool.numpy(), qa_pool_int.numpy()) |
| |
| A = torch.ones((0, 2, 4, 4), dtype=torch.float32) |
| qa = torch.quantize_per_tensor(A, scale=scale, zero_point=zero_point, |
| dtype=torch_type) |
| qc = q_max_pool(qa, k, s, p, d, ceil_mode=False) |
| oH = pool_output_shape(4, kernel, padding, stride, dilation) |
| oW = pool_output_shape(4, kernel, padding, stride, dilation) |
| np.testing.assert_equal(qc.size(), (0, 2, oH, oW), |
| "Quantized maxpool2d with batch size 0 failed.") |
| |
| @given(batch_size=st.integers(1, 5), |
| channels=st.sampled_from([2, 4, 5, 8, 16, 32]), |
| height=st.integers(4, 10), |
| width=st.integers(4, 10), |
| kernel=st.integers(2, 5), |
| stride=st.integers(1, 2), |
| padding=st.integers(1, 2), |
| scale=st.floats(0.2, 1.6), |
| zero_point=st.integers(0, 25) |
| ) |
| def test_avg_pool2d( |
| self, |
| batch_size, |
| channels, |
| height, |
| width, |
| kernel, |
| stride, |
| padding, |
| scale, |
| zero_point |
| |
| ): |
| with override_quantized_engine('qnnpack'): |
| import torch.nn.functional as F |
| X_init = torch.from_numpy(np.random.randint( |
| 0, 50, (batch_size, channels, height, width))) |
| |
| X = scale * (X_init - zero_point).to(dtype=torch.float) |
| |
| # Check constraints |
| assume(kernel // 2 >= padding) # Kernel cannot be overhanging! |
| |
| iH, iW = X.shape[-2:] |
| |
| oH = pool_output_shape(iH, kernel, padding, stride, 1) |
| assume(oH > 0) |
| oW = pool_output_shape(iW, kernel, padding, stride, 1) |
| assume(oW > 0) |
| k = (kernel, kernel) |
| s = (stride, stride) |
| p = (padding, padding) |
| |
| q_avg_pool = torch.nn.quantized.functional.avg_pool2d |
| |
| x_q = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, |
| dtype=torch.quint8) |
| |
| a_pool = F.avg_pool2d(x_q.dequantize().to(torch.float), kernel_size=k, stride=s, padding=p) |
| qa_pool = q_avg_pool(x_q, k, s, p) |
| # Quantize Ref Output |
| a_pool_q = torch.quantize_per_tensor(a_pool, scale=scale, zero_point=zero_point, |
| dtype=torch.quint8) |
| np.testing.assert_array_almost_equal(a_pool_q.int_repr().numpy(), |
| qa_pool.int_repr().numpy(), decimal=0) |
| |
| |
| @given(batch_size=st.integers(1, 5), |
| channels=st.sampled_from([2, 4, 5, 8, 16, 32]), |
| height=st.integers(4, 10), |
| width=st.integers(4, 10), |
| scale=st.floats(0.02, 2.6), |
| zero_point=st.integers(0, 25)) |
| def test_mean(self, batch_size, channels, height, width, scale, zero_point): |
| with override_quantized_engine('qnnpack'): |
| dim = (2, 3) |
| X_init = torch.from_numpy(np.random.randint( |
| 0, 50, (batch_size, channels, height, width))) |
| X = scale * (X_init - zero_point).to(dtype=torch.float) |
| |
| qX = torch.quantize_per_tensor(X, scale, zero_point, torch.quint8) |
| Y = torch.mean(qX.dequantize(), dim) |
| Y = torch.quantize_per_tensor(Y, scale, zero_point, torch.quint8) |
| qY = torch.mean(qX, dim) |
| np.testing.assert_array_almost_equal(Y.int_repr().numpy(), qY.int_repr().numpy(), decimal=0) |
| |
| """Tests the correctness of the tensor comparators.""" |
| class TestComparatorOps(TestCase): |
| """Tests the element-wise equality ops.""" |
| @given(A=hu.tensor(shapes=((3, 4, 5),), |
| qparams=hu.qparams()), |
| B=hu.tensor(shapes=((5,), (1, 5), (1, 1, 5), (4, 5), (3, 4, 5)), |
| qparams=hu.qparams())) |
| def test_compare_tensor_tensor(self, A, B): |
| A, (scale_a, zero_point_a, dtype_a) = A |
| B, (scale_b, zero_point_b, dtype_b) = B |
| tA = torch.from_numpy(A) |
| tB = torch.from_numpy(B) |
| |
| qA = torch.quantize_per_tensor(tA, scale=scale_a, zero_point=zero_point_a, |
| dtype=dtype_a) |
| qB = torch.quantize_per_tensor(tB, scale=scale_b, zero_point=zero_point_b, |
| dtype=dtype_b) |
| dqA = qA.dequantize() |
| dqB = qB.dequantize() |
| |
| ops_under_test = ('__eq__', '__ne__', '__ge__', '__le__', '__gt__', |
| '__lt__', 'eq', 'ne', 'ge', 'le', 'gt', 'lt') |
| |
| for op in ops_under_test: |
| result_ref = getattr(dqA, op)(dqB) |
| result = getattr(qA, op)(qB) |
| self.assertEqual(result_ref, result, |
| "'tensor.{}(tensor)'' failed".format(op)) |
| # Reversed broadcasting. |
| result_ref = getattr(dqB, op)(dqA) |
| result = getattr(qB, op)(qA) |
| self.assertEqual(result_ref, result, |
| "'tensor.{}(tensor)'' failed".format(op)) |
| |
| @unittest.skip("FIXME: Failing due to overflow error without width option") |
| @given(A=hu.tensor(shapes=((3, 4, 5),), |
| qparams=hu.qparams()), |
| b=st.floats(allow_infinity=False, allow_nan=False)) |
| def test_compare_tensor_scalar(self, A, b): |
| A, (scale_a, zero_point_a, dtype_a) = A |
| tA = torch.from_numpy(A) |
| |
| qA = torch.quantize_per_tensor(tA, scale=scale_a, zero_point=zero_point_a, |
| dtype=dtype_a) |
| dqA = qA.dequantize() |
| |
| ops_under_test_reversible = ('__eq__', '__ne__', '__ge__', '__le__', |
| '__gt__', '__lt__') |
| ops_under_test_nonreversible = ('eq', 'ne', 'ge', 'le', 'gt', 'lt') |
| |
| for op in ops_under_test_reversible: |
| result_ref = getattr(dqA, op)(b) |
| result = getattr(qA, op)(b) |
| self.assertEqual(result_ref, result, |
| "'tensor.{}(scalar)'' failed".format(op)) |
| # Reversed broadcasting. |
| result_ref = getattr(b, op)(dqA) |
| result = getattr(b, op)(qA) |
| self.assertEqual(result_ref, result, |
| "'scalar.{}(tensor)'' failed".format(op)) |
| |
| for op in ops_under_test_nonreversible: |
| result_ref = getattr(dqA, op)(b) |
| result = getattr(qA, op)(b) |
| self.assertEqual(result_ref, result, |
| "'tensor.{}(scalar)'' failed".format(op)) |
| |
| |
| if __name__ == "__main__": |
| run_tests() |