blob: 4d1b51742a6d23e6c5bf76e1a87e68e2953fd1c4 [file] [log] [blame]
#include <gtest/gtest.h>
#include <test/cpp/api/support.h>
#include <torch/torch.h>
#include <cmath>
#include <cstddef>
#include <vector>
#include <test/cpp/common/support.h>
template <typename T>
bool exactly_equal(at::Tensor left, T right) {
return left.item<T>() == right;
}
template <typename T>
bool almost_equal(at::Tensor left, T right, T tolerance = 1e-4) {
return std::abs(left.item<T>() - right) < tolerance;
}
#define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_) \
ASSERT_TRUE( \
tensor.device().type() == at::Device((device_), (index_)).type()); \
ASSERT_TRUE( \
tensor.device().index() == at::Device((device_), (index_)).index()); \
ASSERT_EQ(tensor.dtype(), (type_)); \
ASSERT_TRUE(tensor.layout() == (layout_))
TEST(TensorTest, ToDtype) {
auto tensor = at::empty({3, 4});
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
tensor = tensor.to(at::kInt);
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
tensor = tensor.to(at::kChar);
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kChar, at::kStrided);
tensor = tensor.to(at::kDouble);
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided);
tensor = tensor.to(at::TensorOptions(at::kInt));
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
tensor = tensor.to(at::TensorOptions(at::kChar));
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kChar, at::kStrided);
tensor = tensor.to(at::TensorOptions(at::kDouble));
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided);
}
TEST(TensorTest, ToTensorAndTensorAttributes) {
auto tensor = at::empty({3, 4});
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
auto other = at::empty({3, 4}, at::kInt);
tensor = tensor.to(other);
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
other = at::empty({3, 4}, at::kDouble);
tensor = tensor.to(other.dtype());
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided);
tensor = tensor.to(other.device());
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided);
other = at::empty({3, 4}, at::kLong);
tensor = tensor.to(other.device(), other.dtype());
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kLong, at::kStrided);
other = at::empty({3, 4}, at::kInt);
tensor = tensor.to(other.options());
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
}
// Not currently supported.
// TEST(TensorTest, ToLayout) {
// auto tensor = at::empty({3, 4});
// REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
//
// tensor = tensor.to(at::kSparse);
// REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kSparse);
//
// tensor = tensor.to(at::kStrided);
// REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
// }
TEST(TensorTest, ToOptionsWithRequiresGrad) {
{
// Respects requires_grad
auto tensor = torch::empty({3, 4}, at::requires_grad());
ASSERT_TRUE(tensor.requires_grad());
tensor = tensor.to(at::kDouble);
ASSERT_TRUE(tensor.requires_grad());
// Throws if requires_grad is set in TensorOptions
ASSERT_THROW(
tensor.to(at::TensorOptions().requires_grad(true)), c10::Error);
ASSERT_THROW(
tensor.to(at::TensorOptions().requires_grad(false)), c10::Error);
}
{
auto tensor = torch::empty({3, 4});
ASSERT_FALSE(tensor.requires_grad());
// Respects requires_grad
tensor = tensor.to(at::kDouble);
ASSERT_FALSE(tensor.requires_grad());
// Throws if requires_grad is set in TensorOptions
ASSERT_THROW(
tensor.to(at::TensorOptions().requires_grad(true)), c10::Error);
ASSERT_THROW(
tensor.to(at::TensorOptions().requires_grad(false)), c10::Error);
}
}
TEST(TensorTest, ToDoesNotCopyWhenOptionsAreAllTheSame) {
{
auto tensor = at::empty({3, 4}, at::kFloat);
auto hopefully_not_copy = tensor.to(at::kFloat);
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
}
{
auto tensor = at::empty({3, 4}, at::kFloat);
auto hopefully_not_copy = tensor.to(tensor.options());
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
}
{
auto tensor = at::empty({3, 4}, at::kFloat);
auto hopefully_not_copy = tensor.to(tensor.dtype());
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
}
{
auto tensor = at::empty({3, 4}, at::kFloat);
auto hopefully_not_copy = tensor.to(tensor.device());
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
}
{
auto tensor = at::empty({3, 4}, at::kFloat);
auto hopefully_not_copy = tensor.to(tensor);
ASSERT_EQ(hopefully_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
}
}
TEST(TensorTest, ContainsCorrectValueForSingleValue) {
auto tensor = at::tensor(123);
ASSERT_EQ(tensor.numel(), 1);
ASSERT_EQ(tensor.dtype(), at::kInt);
ASSERT_EQ(tensor[0].item<int32_t>(), 123);
tensor = at::tensor(123.456f);
ASSERT_EQ(tensor.numel(), 1);
ASSERT_EQ(tensor.dtype(), at::kFloat);
ASSERT_TRUE(almost_equal(tensor[0], 123.456f));
tensor = at::tensor(123.456);
ASSERT_EQ(tensor.numel(), 1);
ASSERT_EQ(tensor.dtype(), at::kDouble);
ASSERT_TRUE(almost_equal(tensor[0], 123.456));
}
TEST(TensorTest, ContainsCorrectValuesForManyValues) {
auto tensor = at::tensor({1, 2, 3});
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kInt);
ASSERT_TRUE(exactly_equal(tensor[0], 1));
ASSERT_TRUE(exactly_equal(tensor[1], 2));
ASSERT_TRUE(exactly_equal(tensor[2], 3));
tensor = at::tensor(std::vector<int>({1, 2, 3}));
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kInt);
ASSERT_TRUE(exactly_equal(tensor[0], 1));
ASSERT_TRUE(exactly_equal(tensor[1], 2));
ASSERT_TRUE(exactly_equal(tensor[2], 3));
tensor = at::tensor({1.5, 2.25, 3.125});
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kDouble);
ASSERT_TRUE(almost_equal(tensor[0], 1.5));
ASSERT_TRUE(almost_equal(tensor[1], 2.25));
ASSERT_TRUE(almost_equal(tensor[2], 3.125));
tensor = at::tensor(std::vector<double>({1.5, 2.25, 3.125}));
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kDouble);
ASSERT_TRUE(almost_equal(tensor[0], 1.5));
ASSERT_TRUE(almost_equal(tensor[1], 2.25));
ASSERT_TRUE(almost_equal(tensor[2], 3.125));
}
TEST(TensorTest, ContainsCorrectValuesForManyValuesVariable) {
auto tensor = torch::tensor({1, 2, 3});
ASSERT_TRUE(tensor.is_variable());
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kInt);
ASSERT_TRUE(exactly_equal(tensor[0], 1));
ASSERT_TRUE(exactly_equal(tensor[1], 2));
ASSERT_TRUE(exactly_equal(tensor[2], 3));
tensor = torch::tensor(std::vector<int>({1, 2, 3}));
ASSERT_TRUE(tensor.is_variable());
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kInt);
ASSERT_TRUE(exactly_equal(tensor[0], 1));
ASSERT_TRUE(exactly_equal(tensor[1], 2));
ASSERT_TRUE(exactly_equal(tensor[2], 3));
tensor = torch::tensor({1.5, 2.25, 3.125});
ASSERT_TRUE(tensor.is_variable());
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kDouble);
ASSERT_TRUE(almost_equal(tensor[0], 1.5));
ASSERT_TRUE(almost_equal(tensor[1], 2.25));
ASSERT_TRUE(almost_equal(tensor[2], 3.125));
tensor = torch::tensor(std::vector<double>({1.5, 2.25, 3.125}));
ASSERT_TRUE(tensor.is_variable());
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kDouble);
ASSERT_TRUE(almost_equal(tensor[0], 1.5));
ASSERT_TRUE(almost_equal(tensor[1], 2.25));
ASSERT_TRUE(almost_equal(tensor[2], 3.125));
}
TEST(TensorTest, MultidimTensorCtor) {
{
auto tensor = torch::tensor({{1, 2}});
ASSERT_EQ(tensor.dtype(), torch::kInt);
ASSERT_EQ(tensor.sizes(), std::vector<int64_t>({1, 2}));
ASSERT_TRUE(torch::allclose(tensor, torch::arange(1, 3, torch::kInt).view(tensor.sizes())));
ASSERT_FALSE(tensor.requires_grad());
}
{
auto tensor = torch::tensor({{1.0, 2.0}});
ASSERT_EQ(tensor.dtype(), torch::kDouble);
ASSERT_EQ(tensor.sizes(), std::vector<int64_t>({1, 2}));
ASSERT_TRUE(torch::allclose(tensor, torch::arange(1, 3, torch::kDouble).view(tensor.sizes())));
ASSERT_FALSE(tensor.requires_grad());
}
{
auto tensor = torch::tensor({{1, 2}}, torch::dtype(torch::kInt));
ASSERT_EQ(tensor.dtype(), torch::kInt);
ASSERT_EQ(tensor.sizes(), std::vector<int64_t>({1, 2}));
ASSERT_TRUE(torch::allclose(tensor, torch::arange(1, 3, torch::kInt).view(tensor.sizes())));
ASSERT_FALSE(tensor.requires_grad());
}
{
auto tensor = torch::tensor({{{1, 2}}});
ASSERT_EQ(tensor.dtype(), torch::kInt);
ASSERT_EQ(tensor.sizes(), std::vector<int64_t>({1, 1, 2}));
ASSERT_TRUE(torch::allclose(tensor, torch::arange(1, 3, torch::kInt).view(tensor.sizes())));
ASSERT_FALSE(tensor.requires_grad());
}
{
auto tensor = torch::tensor({{1, 2}, {3, 4}});
ASSERT_EQ(tensor.dtype(), torch::kInt);
ASSERT_EQ(tensor.sizes(), std::vector<int64_t>({2, 2}));
ASSERT_TRUE(torch::allclose(tensor, torch::arange(1, 5, torch::kInt).view(tensor.sizes())));
ASSERT_FALSE(tensor.requires_grad());
}
{
auto tensor = torch::tensor({{1, 2}, {3, 4}}, torch::dtype(torch::kFloat).requires_grad(true));
ASSERT_EQ(tensor.dtype(), torch::kFloat);
ASSERT_EQ(tensor.sizes(), std::vector<int64_t>({2, 2}));
ASSERT_TRUE(torch::allclose(tensor, torch::arange(1, 5, torch::kFloat).view(tensor.sizes())));
ASSERT_TRUE(tensor.requires_grad());
}
{
auto tensor = torch::tensor({{{{{{{{1.0, 2.0, 3.0}}}}}, {{{{{4.0, 5.0, 6.0}}}}}, {{{{{7.0, 8.0, 9.0}}}}}}}});
ASSERT_EQ(tensor.dtype(), torch::kDouble);
ASSERT_EQ(tensor.sizes(), std::vector<int64_t>({1, 1, 3, 1, 1, 1, 1, 3}));
ASSERT_TRUE(torch::allclose(tensor, torch::arange(1, 10, torch::kDouble).view(tensor.sizes())));
ASSERT_FALSE(tensor.requires_grad());
}
{
ASSERT_THROWS_WITH(torch::tensor({{{2, 3, 4}, {{5, 6}, {7}}}}),
"Expected all sub-lists to have sizes: 2 (e.g. {5, 6}), but got sub-list {7} with sizes: 1");
}
{
ASSERT_THROWS_WITH(torch::tensor({{{1, 2.0}, {1, 2.0}}}),
"Expected all elements of the tensor to have the same scalar type: Int, but got element of scalar type: Double");
}
{
ASSERT_THROWS_WITH(torch::tensor({{{true, 2.0, 3}, {true, 2.0, 3}}}),
"Expected all elements of the tensor to have the same scalar type: Bool, but got element of scalar type: Double");
}
}
TEST(TensorTest, MultidimTensorCtor_CUDA) {
{
auto tensor = torch::tensor(
{{{{{{{{1.0, 2.0, 3.0}}}}}, {{{{{4.0, 5.0, 6.0}}}}}, {{{{{7.0, 8.0, 9.0}}}}}}}},
torch::dtype(torch::kDouble).device(torch::kCUDA));
ASSERT_TRUE(tensor.device().is_cuda());
ASSERT_EQ(tensor.dtype(), torch::kDouble);
ASSERT_EQ(tensor.sizes(), std::vector<int64_t>({1, 1, 3, 1, 1, 1, 1, 3}));
ASSERT_TRUE(torch::allclose(
tensor,
torch::arange(1, 10, torch::kDouble).view(tensor.sizes()).to(torch::kCUDA)));
ASSERT_FALSE(tensor.requires_grad());
}
}
TEST(TensorTest, PrettyPrintInitListTensor) {
{
ASSERT_EQ(
c10::str(torch::detail::InitListTensor(1.1)),
"1.1");
}
{
ASSERT_EQ(
c10::str(torch::detail::InitListTensor({1.1, 2.2})),
"{1.1, 2.2}");
}
{
ASSERT_EQ(
c10::str(torch::detail::InitListTensor({{1, 2}, {3, 4}})),
"{{1, 2}, {3, 4}}");
}
{
ASSERT_EQ(
c10::str(torch::detail::InitListTensor({{{{{{{{1.1, 2.2, 3.3}}}}}, {{{{{4.4, 5.5, 6.6}}}}}, {{{{{7.7, 8.8, 9.9}}}}}}}})),
"{{{{{{{{1.1, 2.2, 3.3}}}}}, {{{{{4.4, 5.5, 6.6}}}}}, {{{{{7.7, 8.8, 9.9}}}}}}}}");
}
}
TEST(TensorTest, ContainsCorrectValuesWhenConstructedFromVector) {
std::vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
auto tensor = at::tensor(v);
ASSERT_EQ(tensor.numel(), v.size());
ASSERT_EQ(tensor.dtype(), at::kInt);
for (size_t i = 0; i < v.size(); ++i) {
ASSERT_TRUE(exactly_equal(tensor[i], v.at(i)));
}
std::vector<double> w = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9, 10.0};
tensor = at::tensor(w);
ASSERT_EQ(tensor.numel(), w.size());
ASSERT_EQ(tensor.dtype(), at::kDouble);
for (size_t i = 0; i < w.size(); ++i) {
ASSERT_TRUE(almost_equal(tensor[i], w.at(i)));
}
}
TEST(TensorTest, UsesOptionsThatAreSupplied) {
auto tensor = at::tensor(123, at::dtype(at::kFloat)) + 0.5;
ASSERT_EQ(tensor.numel(), 1);
ASSERT_EQ(tensor.dtype(), at::kFloat);
ASSERT_TRUE(almost_equal(tensor[0], 123.5));
tensor = at::tensor({1.1, 2.2, 3.3}, at::dtype(at::kInt));
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor.dtype(), at::kInt);
ASSERT_EQ(tensor.layout(), at::kStrided);
ASSERT_TRUE(exactly_equal(tensor[0], 1));
ASSERT_TRUE(exactly_equal(tensor[1], 2));
ASSERT_TRUE(exactly_equal(tensor[2], 3));
}
TEST(TensorTest, FromBlob) {
std::vector<double> v = {1.0, 2.0, 3.0};
auto tensor = torch::from_blob(
v.data(), v.size(), torch::dtype(torch::kFloat64).requires_grad(true));
ASSERT_TRUE(tensor.is_variable());
ASSERT_TRUE(tensor.requires_grad());
ASSERT_EQ(tensor.dtype(), torch::kFloat64);
ASSERT_EQ(tensor.numel(), 3);
ASSERT_EQ(tensor[0].item<double>(), 1);
ASSERT_EQ(tensor[1].item<double>(), 2);
ASSERT_EQ(tensor[2].item<double>(), 3);
}
TEST(TensorTest, FromBlobUsesDeleter) {
bool called = false;
{
std::vector<int32_t> v = {1, 2, 3};
auto tensor = torch::from_blob(
v.data(),
v.size(),
/*deleter=*/[&called](void* data) { called = true; },
torch::kInt32);
}
ASSERT_TRUE(called);
}
TEST(TensorTest, FromBlobWithStrides) {
// clang-format off
std::vector<int32_t> v = {
1, 2, 3,
4, 5, 6,
7, 8, 9
};
// clang-format on
auto tensor = torch::from_blob(
v.data(),
/*sizes=*/{3, 3},
/*strides=*/{1, 3},
torch::kInt32);
ASSERT_TRUE(tensor.is_variable());
ASSERT_EQ(tensor.dtype(), torch::kInt32);
ASSERT_EQ(tensor.numel(), 9);
const std::vector<int64_t> expected_strides = {1, 3};
ASSERT_EQ(tensor.strides(), expected_strides);
for (int64_t i = 0; i < tensor.size(0); ++i) {
for (int64_t j = 0; j < tensor.size(1); ++j) {
// NOTE: This is column major because the strides are swapped.
EXPECT_EQ(tensor[i][j].item<int32_t>(), 1 + (j * tensor.size(1)) + i);
}
}
}
TEST(TensorTest, Item) {
{
torch::Tensor tensor = torch::tensor(3.14);
torch::Scalar scalar = tensor.item();
ASSERT_NEAR(scalar.to<float>(), 3.14, 1e-5);
}
{
torch::Tensor tensor = torch::tensor(123);
torch::Scalar scalar = tensor.item();
ASSERT_EQ(scalar.to<int>(), 123);
}
}
TEST(TensorTest, Item_CUDA) {
{
torch::Tensor tensor = torch::tensor(3.14, torch::kCUDA);
torch::Scalar scalar = tensor.item();
ASSERT_NEAR(scalar.to<float>(), 3.14, 1e-5);
}
{
torch::Tensor tensor = torch::tensor(123, torch::kCUDA);
torch::Scalar scalar = tensor.item();
ASSERT_EQ(scalar.to<int>(), 123);
}
}
TEST(TensorTest, DataPtr) {
auto tensor = at::empty({3, 4}, at::kFloat);
auto tensor_not_copy = tensor.to(tensor.options());
ASSERT_EQ(tensor_not_copy.data_ptr<float>(), tensor.data_ptr<float>());
ASSERT_EQ(tensor_not_copy.data_ptr(), tensor.data_ptr());
}
TEST(TensorTest, Data) {
const auto tensor = torch::rand({3, 3});
ASSERT_TRUE(torch::equal(tensor, tensor.data()));
const auto tensor2 = at::rand({3, 3});
ASSERT_THROW(tensor2.data(), c10::Error);
}
TEST(TensorTest, BackwardAndGrad) {
auto x = torch::tensor({5}, at::TensorOptions().requires_grad(true));
auto y = x * x;
y.backward();
ASSERT_EQ(x.grad().item<float>(), 10.0);
x = at::tensor({5});
y = x * x;
ASSERT_THROWS_WITH(y.backward(), "backward is not implemented for Tensor");
ASSERT_THROWS_WITH(x.grad(), "grad is not implemented for Tensor");
}
TEST(TensorTest, BackwardCreatesOnesGrad) {
const auto x = torch::tensor({5}, at::TensorOptions().requires_grad(true));
x.backward();
ASSERT_TRUE(torch::equal(x.grad(),
torch::ones_like(x)));
}
TEST(TensorTest, BackwardNonScalarOutputs) {
auto x = torch::randn({5, 5}, torch::requires_grad());
auto y = x * x;
ASSERT_THROWS_WITH(y.backward(),
"grad can be implicitly created only for scalar outputs");
}
TEST(TensorTest, IsLeaf) {
auto x = torch::tensor({5}, at::TensorOptions().requires_grad(true));
auto y = x * x;
ASSERT_TRUE(x.is_leaf());
ASSERT_FALSE(y.is_leaf());
x = at::tensor({5});
y = x * x;
const auto message = "is_leaf is not implemented for Tensor";
ASSERT_THROWS_WITH(y.is_leaf(), message);
ASSERT_THROWS_WITH(x.is_leaf(), message);
}
TEST(TensorTest, OutputNr) {
auto x = torch::tensor({5}, at::TensorOptions().requires_grad(true));
auto y = x * x;
ASSERT_EQ(x.output_nr(), 0);
ASSERT_EQ(y.output_nr(), 0);
x = at::tensor({5});
y = x * x;
const auto message = "output_nr is not implemented for Tensor";
ASSERT_THROWS_WITH(y.output_nr(), message);
ASSERT_THROWS_WITH(x.output_nr(), message);
}
TEST(TensorTest, Version) {
auto x = torch::ones(3);
ASSERT_EQ(x._version(), 0);
x.mul_(2);
ASSERT_EQ(x._version(), 1);
x.add_(1);
ASSERT_EQ(x._version(), 2);
x = at::ones(3);
const auto message = "version is not implemented for Tensor";
ASSERT_THROWS_WITH(x._version(), message);
x.mul_(2);
ASSERT_THROWS_WITH(x._version(), message);
x.add_(1);
ASSERT_THROWS_WITH(x._version(), message);
}
TEST(TensorTest, Detach) {
auto x = torch::tensor({5}, at::TensorOptions().requires_grad(true));
auto y = x * x;
const auto y_detached = y.detach();
ASSERT_FALSE(y.is_leaf());
ASSERT_TRUE(y_detached.is_leaf());
ASSERT_FALSE(y_detached.requires_grad());
x = at::tensor({5}, at::TensorOptions().requires_grad(false));
y = x * x;
const auto message = "detach is not implemented for Tensor";
ASSERT_THROWS_WITH(x.detach(), message);
ASSERT_THROWS_WITH(y.detach(), message);
}
TEST(TensorTest, DetachInplace) {
auto x = torch::tensor({5}, at::TensorOptions().requires_grad(true));
auto y = x * x;
auto y_detached = y.detach_();
ASSERT_TRUE(y.is_leaf());
ASSERT_FALSE(y.requires_grad());
ASSERT_TRUE(y_detached.is_leaf());
ASSERT_FALSE(y_detached.requires_grad());
x = at::tensor({5}, at::TensorOptions().requires_grad(false));
y = x * x;
const auto message = "detach_ is not implemented for Tensor";
ASSERT_THROWS_WITH(x.detach_(), message);
ASSERT_THROWS_WITH(y.detach_(), message);
}
TEST(TensorTest, SetData) {
auto x = torch::randn({5});
auto y = torch::randn({5});
ASSERT_FALSE(torch::equal(x, y));
ASSERT_NE(x.data_ptr<float>(), y.data_ptr<float>());
x.set_data(y);
ASSERT_TRUE(torch::equal(x, y));
ASSERT_EQ(x.data_ptr<float>(), y.data_ptr<float>());
x = at::tensor({5});
y = at::tensor({5});
ASSERT_THROWS_WITH(x.set_data(y), "set_data is not implemented for Tensor");
}