blob: fa0693ec3ec3febe1dd906ff27d2fc3ff8999611 [file] [log] [blame]
#include <gtest/gtest.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
using namespace torch::nn;
using namespace torch::test;
struct NNUtilsTest : torch::test::SeedingFixture {};
TEST_F(NNUtilsTest, ClipGradNorm) {
auto linear_layer = Linear(10, 10);
float max_norm = 2;
auto compute_norm = [linear_layer](float norm_type) -> float {
float total_norm = 0.0;
if (norm_type != std::numeric_limits<float>::infinity()) {
for (const auto& p : linear_layer->parameters()) {
total_norm +=
p.grad().data().abs().pow(norm_type).sum().item().toFloat();
}
return std::pow(total_norm, 1.0 / norm_type);
} else {
for (const auto& p : linear_layer->parameters()) {
auto param_max = p.grad().data().abs().max().item().toFloat();
if (param_max > total_norm) {
total_norm = param_max;
}
}
return total_norm;
}
};
auto compare_scaling =
[linear_layer](const std::vector<torch::Tensor>& grads) -> torch::Tensor {
std::vector<torch::Tensor> p_scale;
for (int i = 0; i < grads.size(); i++) {
auto param = linear_layer->parameters()[i];
auto grad = grads[i];
p_scale.push_back(param.grad().data().div(grad).view(-1));
}
auto scale = torch::cat(p_scale);
return scale; // need to assert std is 0.
};
std::vector<torch::Tensor> grads = {
torch::arange(1.0, 101).view({10, 10}),
torch::ones(10).div(1000),
};
std::vector<float> norm_types = {
0.5,
1.5,
2.0,
4.0,
std::numeric_limits<float>::infinity(),
};
for (auto norm_type : norm_types) {
for (int i = 0; i < grads.size(); i++) {
linear_layer->parameters()[i].grad() =
grads[i].clone().view_as(linear_layer->parameters()[i].data());
}
auto norm_before = compute_norm(norm_type);
auto layer_params = linear_layer->parameters();
auto norm = utils::clip_grad_norm_(layer_params, max_norm, norm_type);
auto norm_after = compute_norm(norm_type);
ASSERT_FLOAT_EQ(norm, norm_before);
ASSERT_FLOAT_EQ(norm_after, max_norm);
ASSERT_LE(norm_after, max_norm);
auto scaled = compare_scaling(grads);
ASSERT_NEAR(0, scaled.std().item().toFloat(), 1e-7);
}
// Small gradients should be lefted unchanged
grads = {
torch::rand({10, 10}).div(10000),
torch::ones(10).div(500),
};
for (auto norm_type : norm_types) {
for (int i = 0; i < grads.size(); i++) {
linear_layer->parameters()[i].grad().data().copy_(grads[i]);
}
auto norm_before = compute_norm(norm_type);
auto layer_params = linear_layer->parameters();
auto norm = utils::clip_grad_norm_(layer_params, max_norm, norm_type);
auto norm_after = compute_norm(norm_type);
ASSERT_FLOAT_EQ(norm, norm_before);
ASSERT_FLOAT_EQ(norm_before, norm_after);
ASSERT_LE(norm_after, max_norm);
auto scaled = compare_scaling(grads);
ASSERT_NEAR(0, scaled.std().item().toFloat(), 1e-7);
ASSERT_EQ(scaled[0].item().toFloat(), 1);
}
// should accept a single tensor as input
auto p1 = torch::randn({10, 10});
auto p2 = torch::randn({10, 10});
auto g = torch::arange(1., 101).view({10, 10});
p1.grad() = g.clone();
p2.grad() = g.clone();
for (const auto norm_type : norm_types) {
utils::clip_grad_norm_(p1, max_norm, norm_type);
std::vector<torch::Tensor> params = {p2};
utils::clip_grad_norm_(params, max_norm, norm_type);
ASSERT_TRUE(torch::allclose(p1.grad(), p2.grad()));
}
}