| #include <gtest/gtest.h> |
| |
| #include <torch/torch.h> |
| |
| #include <test/cpp/api/support.h> |
| |
| using namespace torch::nn; |
| using namespace torch::test; |
| |
| struct NNUtilsTest : torch::test::SeedingFixture {}; |
| |
| TEST_F(NNUtilsTest, ClipGradNorm) { |
| auto linear_layer = Linear(10, 10); |
| float max_norm = 2; |
| auto compute_norm = [linear_layer](float norm_type) -> float { |
| float total_norm = 0.0; |
| if (norm_type != std::numeric_limits<float>::infinity()) { |
| for (const auto& p : linear_layer->parameters()) { |
| total_norm += |
| p.grad().data().abs().pow(norm_type).sum().item().toFloat(); |
| } |
| return std::pow(total_norm, 1.0 / norm_type); |
| } else { |
| for (const auto& p : linear_layer->parameters()) { |
| auto param_max = p.grad().data().abs().max().item().toFloat(); |
| if (param_max > total_norm) { |
| total_norm = param_max; |
| } |
| } |
| return total_norm; |
| } |
| }; |
| auto compare_scaling = |
| [linear_layer](const std::vector<torch::Tensor>& grads) -> torch::Tensor { |
| std::vector<torch::Tensor> p_scale; |
| for (int i = 0; i < grads.size(); i++) { |
| auto param = linear_layer->parameters()[i]; |
| auto grad = grads[i]; |
| p_scale.push_back(param.grad().data().div(grad).view(-1)); |
| } |
| auto scale = torch::cat(p_scale); |
| return scale; // need to assert std is 0. |
| }; |
| |
| std::vector<torch::Tensor> grads = { |
| torch::arange(1.0, 101).view({10, 10}), |
| torch::ones(10).div(1000), |
| }; |
| std::vector<float> norm_types = { |
| 0.5, |
| 1.5, |
| 2.0, |
| 4.0, |
| std::numeric_limits<float>::infinity(), |
| }; |
| for (auto norm_type : norm_types) { |
| for (int i = 0; i < grads.size(); i++) { |
| linear_layer->parameters()[i].grad() = |
| grads[i].clone().view_as(linear_layer->parameters()[i].data()); |
| } |
| auto norm_before = compute_norm(norm_type); |
| auto layer_params = linear_layer->parameters(); |
| auto norm = utils::clip_grad_norm_(layer_params, max_norm, norm_type); |
| auto norm_after = compute_norm(norm_type); |
| ASSERT_FLOAT_EQ(norm, norm_before); |
| ASSERT_FLOAT_EQ(norm_after, max_norm); |
| ASSERT_LE(norm_after, max_norm); |
| auto scaled = compare_scaling(grads); |
| ASSERT_NEAR(0, scaled.std().item().toFloat(), 1e-7); |
| } |
| // Small gradients should be lefted unchanged |
| grads = { |
| torch::rand({10, 10}).div(10000), |
| torch::ones(10).div(500), |
| }; |
| for (auto norm_type : norm_types) { |
| for (int i = 0; i < grads.size(); i++) { |
| linear_layer->parameters()[i].grad().data().copy_(grads[i]); |
| } |
| auto norm_before = compute_norm(norm_type); |
| auto layer_params = linear_layer->parameters(); |
| auto norm = utils::clip_grad_norm_(layer_params, max_norm, norm_type); |
| auto norm_after = compute_norm(norm_type); |
| ASSERT_FLOAT_EQ(norm, norm_before); |
| ASSERT_FLOAT_EQ(norm_before, norm_after); |
| ASSERT_LE(norm_after, max_norm); |
| auto scaled = compare_scaling(grads); |
| ASSERT_NEAR(0, scaled.std().item().toFloat(), 1e-7); |
| ASSERT_EQ(scaled[0].item().toFloat(), 1); |
| } |
| // should accept a single tensor as input |
| auto p1 = torch::randn({10, 10}); |
| auto p2 = torch::randn({10, 10}); |
| auto g = torch::arange(1., 101).view({10, 10}); |
| p1.grad() = g.clone(); |
| p2.grad() = g.clone(); |
| for (const auto norm_type : norm_types) { |
| utils::clip_grad_norm_(p1, max_norm, norm_type); |
| std::vector<torch::Tensor> params = {p2}; |
| utils::clip_grad_norm_(params, max_norm, norm_type); |
| ASSERT_TRUE(torch::allclose(p1.grad(), p2.grad())); |
| } |
| } |