blob: d6fffdef380b5f0e560b00b629c2a528daa9c314 [file] [log] [blame]
#ifndef THC_GENERIC_FILE
#define THC_GENERIC_FILE "generic/SpatialReflectionPadding.cu"
#else
void THNN_(SpatialReflectionPadding_updateOutput)(THCState *state,
THCTensor *input,
THCTensor *output,
int padL, int padR,
int padT, int padB) {
THArgCheck(TensorUtils<THCTensor>::canUse32BitIndexMath(state, input), 2,
"input tensor must fit into 32-bit index math");
int planeDim = 0;
int dimh = 1;
int dimw = 2;
int numBatch = 1;
int numInputDims = THCTensor_(nDimension)(state, input);
THCUNN_argCheck(state, numInputDims == 3 || numInputDims == 4, 2, input,
"3D or 4D (batch mode) tensor expected for input, but got: %s")
if (numInputDims == 4) {
numBatch = THCTensor_(size)(state, input, 0);
planeDim++;
dimh++;
dimw++;
}
int numPlanes = THCTensor_(size)(state, input, planeDim);
int inputH = THCTensor_(size)(state, input, dimh);
int inputW = THCTensor_(size)(state, input, dimw);
int outputH = inputH + padT + padB;
int outputW = inputW + padL + padR;
THArgCheck(outputW >= 1 || outputH >= 1 , 2,
"input (H: %d, W: %d)is too small."
" Calculated output H: %d W: %d",
inputH, inputW, outputH, outputW);
THCDeviceTensor<real, 4> devInput;
THCDeviceTensor<real, 4> devOutput;
if (numInputDims == 3) {
THCTensor_(resize3d)(state, output, numPlanes, outputH, outputW);
devInput = toDeviceTensor<real, 3>(state, input).upcastOuter<4>();
devOutput = toDeviceTensor<real, 3>(state, output).upcastOuter<4>();
} else {
THCTensor_(resize4d)(state, output, numBatch, numPlanes, outputH, outputW);
devInput = toDeviceTensor<real, 4>(state, input);
devOutput = toDeviceTensor<real, 4>(state, output);
}
int outputPlaneSize = devOutput.getSize(2) * devOutput.getSize(3);
dim3 gridSize(THCCeilDiv(outputPlaneSize, 256),
devOutput.getSize(1),
devOutput.getSize(0));
dim3 blockSize(outputPlaneSize > 256 ? 256 : outputPlaneSize);
SpatialReflectionPadding_updateOutput<<<gridSize, blockSize, 0, THCState_getCurrentStream(state)>>>(
devInput, devOutput, padT, padB, padL, padR);
THCudaCheck(cudaGetLastError());
}
void THNN_(SpatialReflectionPadding_updateGradInput)(
THCState *state,
THCTensor *input,
THCTensor *gradOutput,
THCTensor *gradInput,
int padL, int padR,
int padT, int padB) {
THArgCheck(TensorUtils<THCTensor>::canUse32BitIndexMath(state, input), 2,
"input tensor must fit into 32-bit index math");
THArgCheck(TensorUtils<THCTensor>::canUse32BitIndexMath(state, gradOutput), 3,
"output gradient tensor must fit into 32-bit index math");
int planeDim = 0;
int dimh = 1;
int dimw = 2;
int numInputDims = THCTensor_(nDimension)(state, input);
if (numInputDims == 4) {
planeDim++;
dimh++;
dimw++;
}
int iheight = input->size[dimh];
int iwidth = input->size[dimw];
int oheight = iheight + padT + padB;
int owidth = iwidth + padL + padR;
THArgCheck(owidth == THCTensor_(size)(state, gradOutput, dimw), 3,
"gradOutput width unexpected. Expected: %d, Got: %d",
owidth, THCTensor_(size)(state, gradOutput, dimw));
THArgCheck(oheight == THCTensor_(size)(state, gradOutput, dimh), 3,
"gradOutput height unexpected. Expected: %d, Got: %d",
oheight, THCTensor_(size)(state, gradOutput, dimh));
THCTensor_(resizeAs)(state, gradInput, input);
THCTensor_(zero)(state, gradInput);
THCDeviceTensor<real, 4> devGradInput;
THCDeviceTensor<real, 4> devGradOutput;
if (numInputDims == 3) {
devGradInput = toDeviceTensor<real, 3>(state, gradInput).upcastOuter<4>();
devGradOutput = toDeviceTensor<real, 3>(state, gradOutput).upcastOuter<4>();
} else {
devGradInput = toDeviceTensor<real, 4>(state, gradInput);
devGradOutput = toDeviceTensor<real, 4>(state, gradOutput);
}
int outputPlaneSize = devGradOutput.getSize(2) * devGradOutput.getSize(3);
dim3 gridSize(THCCeilDiv(outputPlaneSize, 256),
devGradOutput.getSize(1),
devGradOutput.getSize(0));
dim3 blockSize(outputPlaneSize > 256 ? 256 : outputPlaneSize);
SpatialReflectionPadding_updateGradInput<<<gridSize, blockSize, 0, THCState_getCurrentStream(state)>>>(
devGradInput, devGradOutput, padT, padB, padL, padR);
THCudaCheck(cudaGetLastError());
}
#endif