blob: 970115bf01941fd751947ee38e340ab6802025af [file] [log] [blame]
import math
import torch
from functools import reduce
from ._utils import _range
SCALE_FORMAT = '{:.5f} *\n'
def _number_format(storage):
min_sz = 0
double_storage = torch.DoubleStorage(storage.size()).copy_(storage)
tensor = torch.DoubleTensor(double_storage).abs()
pos_inf_mask = tensor.eq(float('inf'))
neg_inf_mask = tensor.eq(float('-inf'))
nan_mask = tensor.ne(tensor)
invalid_value_mask = pos_inf_mask + neg_inf_mask + nan_mask
if invalid_value_mask.all(): # There are no regular numbers...
tensor = torch.zeros(1)
# Get any of non inf and nan values in the tensor
example_value = tensor[invalid_value_mask.eq(0)][0]
tensor[invalid_value_mask] = example_value
if invalid_value_mask.any():
min_sz = 3
int_mode = True
# TODO: use fmod?
for value in tensor:
if value != math.ceil(value):
int_mode = False
break
exp_min = tensor.min()
if exp_min != 0:
exp_min = math.floor(math.log10(exp_min)) + 1
else:
exp_min = 1
exp_max = tensor.max()
if exp_max != 0:
exp_max = math.floor(math.log10(exp_max)) + 1
else:
exp_max = 1
scale = 1
exp_max = int(exp_max)
if int_mode:
if exp_max > 9:
format = '{:11.4e}'
sz = max(min_sz, 11)
else:
sz = max(min_sz, exp_max + 1)
format = '{:' + str(sz) + '.0f}'
else:
if exp_max - exp_min > 4:
sz = 11
if abs(exp_max) > 99 or abs(exp_min) > 99:
sz = sz + 1
sz = max(min_sz, sz)
format = '{:' + str(sz) + '.4e}'
else:
if exp_max > 5 or exp_max < 0:
sz = max(min_sz, 7)
scale = math.pow(10, exp_max-1)
else:
if exp_max == 0:
sz = 7
else:
sz = exp_max + 6
sz = max(min_sz, sz)
format = '{:' + str(sz) + '.4f}'
return format, scale, sz
def _tensor_str(self):
counter_dim = self.ndimension()-2
counter = torch.LongStorage(counter_dim).fill_(0)
counter[0] = -1
finished = False
strt = ''
while True:
for i in _range(counter_dim):
counter[i] += 1
if counter[i] == self.size(i):
if i == counter_dim-1:
finished = True
counter[i] = 0
else:
break
if finished:
break
if strt != '':
strt += '\n'
strt += '({},.,.) = \n'.format(','.join(str(i) for i in counter))
submatrix = reduce(lambda t,i: t.select(0, i), counter, self)
strt += _matrix_str(submatrix, ' ')
return strt
def _matrix_str(self, indent=''):
fmt, scale, sz = _number_format(self.storage())
nColumnPerLine = int(math.floor((80-len(indent))/(sz+1)))
strt = ''
firstColumn = 0
while firstColumn < self.size(1):
lastColumn = min(firstColumn + nColumnPerLine - 1, self.size(1)-1)
if nColumnPerLine < self.size(1):
strt += '\n' if firstColumn != 1 else ''
strt += 'Columns {} to {} \n{}'.format(firstColumn, lastColumn, indent)
if scale != 1:
strt += SCALE_FORMAT.format(scale)
for l in _range(self.size(0)):
strt += indent + (' ' if scale != 1 else '')
row_slice = self[l, firstColumn:lastColumn+1]
strt += ' '.join(fmt.format(val/scale) for val in row_slice) + '\n'
firstColumn = lastColumn + 1
return strt
def _vector_str(tensor):
fmt, scale, _ = _number_format(tensor.storage())
strt = ''
if scale != 1:
strt += SCALE_FORMAT.format(scale)
return '\n'.join(fmt.format(val/scale) for val in tensor) + '\n'
def _str(self):
if self.ndimension() == 0:
return '[{} with no dimension]\n'.format(torch.typename(self))
elif self.ndimension() == 1:
strt = _vector_str(self)
elif self.ndimension() == 2:
strt = _matrix_str(self)
else:
strt = _tensor_str(self)
size_str = 'x'.join(str(size) for size in self.size())
strt += '[{} of size {}]\n'.format(torch.typename(self), size_str)
return '\n' + strt