| # Copyright (c) Meta Platforms, Inc. and affiliates |
| import logging |
| import math |
| from typing import Dict, List, Optional, Tuple, TYPE_CHECKING, Union |
| |
| import torch |
| |
| from torch.distributed import is_available |
| |
| from ..utils._typing_utils import not_none |
| |
| __all__ = ["init_device_mesh", "DeviceMesh"] |
| |
| |
| if not is_available(): |
| import sys |
| |
| # We need to create the stubs when distributed is not available. |
| # Otherwise, we would fail the doc tests (```./.ci/pytorch/docs-test.sh```), |
| # since it would try to import ``torch.distributed.device_mesh`` or |
| # ``torch.distributed.init_device_mesh`` but cannot find them. |
| |
| class _DeviceMeshStub: |
| pass |
| |
| def _init_device_mesh_stub(): |
| pass |
| |
| sys.modules["torch.distributed.device_mesh"].DeviceMesh = _DeviceMeshStub # type: ignore[attr-defined] |
| sys.modules[ |
| "torch.distributed.device_mesh" |
| ].init_device_mesh = _init_device_mesh_stub # type: ignore[attr-defined] |
| |
| |
| else: |
| from torch.distributed.distributed_c10d import ( |
| _find_pg_by_ranks_and_tag, |
| _get_default_group, |
| _get_group_tag, |
| get_rank, |
| get_world_size, |
| init_process_group, |
| is_initialized, |
| new_group, |
| ProcessGroup, |
| ) |
| |
| logger = logging.getLogger(__name__) |
| |
| # only import numpy typing when type checking |
| if TYPE_CHECKING: |
| try: |
| from numpy.typing import ArrayLike |
| except ImportError: |
| logger.warning( |
| "DeviceMesh requires numpy >= 1.21 to be installed for type checking" |
| ) |
| |
| class _MeshEnv: |
| def __init__(self) -> None: |
| self.mesh_stack: List[DeviceMesh] = [] |
| self.child_to_parent_mapping: Dict[DeviceMesh, DeviceMesh] = {} |
| self.parent_to_child_mapping: Dict[DeviceMesh, Dict[str, DeviceMesh]] = {} |
| |
| def get_current_mesh(self) -> "DeviceMesh": |
| if len(self.mesh_stack) == 0: |
| raise RuntimeError("No device mesh is currently active!") |
| return self.mesh_stack[-1] |
| |
| def create_child_mesh( |
| self, device_mesh: "DeviceMesh", mesh_dim: int, mesh_dim_name: str |
| ) -> "DeviceMesh": |
| # Directly return the child mesh if it is already created. |
| child_mesh_mappings = self.parent_to_child_mapping.get(device_mesh) |
| if child_mesh_mappings: |
| sub_mesh = child_mesh_mappings.get(mesh_dim_name) |
| if sub_mesh: |
| return sub_mesh |
| |
| # swap the current dim to the last dim then reshape to flatten out other |
| # dims, so we can just extract the list of ranks which contains cur_rank. |
| cur_rank = device_mesh.get_rank() |
| pg_ranks_by_dim = device_mesh.mesh.swapdims(-1, mesh_dim).reshape( |
| -1, device_mesh.mesh.size(mesh_dim) |
| ) |
| |
| for mesh_1d in pg_ranks_by_dim: |
| sub_mesh = DeviceMesh( |
| device_mesh.device_type, |
| mesh_1d, |
| mesh_dim_names=(mesh_dim_name,), |
| _init_backend=False, |
| ) |
| if cur_rank in mesh_1d: |
| res_sub_mesh = sub_mesh |
| |
| res_sub_mesh._dim_group_infos = [device_mesh._dim_group_infos[mesh_dim]] # type: ignore[possibly-undefined] |
| # Assign the current DeviceMesh as the parent of the child DeviceMesh. |
| self.child_to_parent_mapping[res_sub_mesh] = device_mesh |
| self.parent_to_child_mapping.setdefault(device_mesh, {})[ |
| mesh_dim_name |
| ] = res_sub_mesh |
| return res_sub_mesh |
| |
| def get_parent_mesh(self, device_mesh: "DeviceMesh") -> Optional["DeviceMesh"]: |
| return self.child_to_parent_mapping.get(device_mesh, None) |
| |
| def get_parent_mesh_dim(self, device_mesh: "DeviceMesh") -> Optional[int]: |
| """ |
| Return the index of the mesh dim in the parent mesh. |
| The device_mesh passed in needs to be sliced out from a parent mesh. |
| """ |
| parent_mesh = self.get_parent_mesh(device_mesh) |
| child_mesh_dim_names = device_mesh.mesh_dim_names |
| if parent_mesh and child_mesh_dim_names: |
| assert ( |
| len(child_mesh_dim_names) == 1 |
| ), "The child mesh can only be a 1D mesh." |
| child_mesh_dim_name = child_mesh_dim_names[0] |
| return self.get_mesh_dim_by_name(parent_mesh, child_mesh_dim_name) |
| return None |
| |
| @staticmethod |
| def num_devices_per_host(device_type: str) -> int: |
| return _get_device_handle(device_type).device_count() |
| |
| @staticmethod |
| def num_hosts(device_type: str) -> int: |
| # ProcessGroup can't tell us this info so we have to infer it, assume |
| # homogeneous hardware for now |
| return get_world_size() // _MeshEnv.num_devices_per_host(device_type) |
| |
| def get_mesh_dim_by_name( |
| self, device_mesh: "DeviceMesh", mesh_dim_name: str |
| ) -> int: |
| if ( |
| device_mesh.mesh_dim_names is None |
| or len(device_mesh.mesh_dim_names) == 0 |
| ): |
| raise KeyError( |
| "No `mesh_dim_names` found.", |
| ) |
| if mesh_dim_name not in device_mesh.mesh_dim_names: |
| raise KeyError( |
| f"Mesh dimension '{mesh_dim_name}' does not exist.", |
| f"Available mesh dimensions are: mesh_dim_names={device_mesh.mesh_dim_names}", |
| ) |
| return not_none(device_mesh.mesh_dim_names.index(mesh_dim_name)) |
| |
| _mesh_resources: _MeshEnv = _MeshEnv() |
| |
| def _get_device_handle(device_type: str = "cuda"): |
| """ |
| Get the module corresponding to the device_type which is cuda or cuda-like device. |
| For example, when the device_type is cuda, the module `torch.cuda` is returned. |
| Return None when there is no corresponding module for device_type, otherwise |
| return the corresponding module. |
| """ |
| return getattr(torch, device_type, None) |
| |
| class DeviceMesh: |
| """ |
| DeviceMesh represents a mesh of devices, where layout of devices could be |
| represented as a n-d dimension array, and each value of the n-d dimensional |
| array is the global id of the default process group ranks. |
| |
| DeviceMesh could be used to describe the layout of devices across the cluster, |
| and serves as a proxy for communication among the device lists within the cluster. |
| |
| DeviceMesh can be used as a context manager. |
| |
| .. note:: |
| DeviceMesh follows SPMD programming model, which means the same PyTorch Python program |
| is running on all processes/ranks in the cluster. Therefore, users need to make sure the |
| `mesh` array (which describes the layout of devices) should be identical across all ranks. |
| Inconsistent `mesh` will lead to silent hang. |
| |
| Args: |
| device_type (str): The device type of the mesh. Currently supports: "cpu", "cuda/cuda-like". |
| mesh (ndarray): A multi-dimensional array or an integer tensor describing the layout |
| of devices, where the IDs are global IDs of the default process group. |
| |
| Returns: |
| DeviceMesh: A :class:`DeviceMesh` object representing the device layout. |
| |
| The following program runs on each process/rank in an SPMD manner. In this example, we have 2 |
| hosts with 4 GPUs each. |
| A reduction over the first dimension of mesh will reduce across |
| columns (0, 4), .. and (3, 7), a reduction over the second dimension |
| of mesh reduces across rows (0, 1, 2, 3) and (4, 5, 6, 7). |
| |
| Example:: |
| >>> # xdoctest: +SKIP("no rank") |
| >>> from torch.distributed.device_mesh import DeviceMesh |
| >>> |
| >>> # Initialize device mesh as (2, 4) to represent the topology |
| >>> # of cross-host(dim 0), and within-host (dim 1). |
| >>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]]) |
| """ |
| |
| device_type: str |
| mesh: torch.Tensor |
| mesh_dim_names: Optional[Tuple[str, ...]] |
| |
| def __init__( |
| self, |
| device_type: str, |
| mesh: Union[torch.Tensor, "ArrayLike"], |
| *, |
| mesh_dim_names: Optional[Tuple[str, ...]] = None, |
| _init_backend: bool = True, |
| ) -> None: |
| self.device_type = device_type |
| if isinstance(mesh, torch.Tensor) and mesh.device.type != "cpu": |
| raise ValueError(f"`mesh` must be a CPU tensor, got {mesh}") |
| self.mesh = ( |
| mesh.detach().to(device="cpu", dtype=torch.int) |
| if isinstance(mesh, torch.Tensor) |
| else torch.tensor(mesh, dtype=torch.int) |
| ) |
| self.mesh_dim_names = mesh_dim_names |
| |
| # private field to pre-generate DeviceMesh's hash |
| self._flatten_mesh_list = tuple(self.mesh.flatten().tolist()) |
| self._hash = hash((self._flatten_mesh_list, self.mesh.shape, id(self))) |
| |
| # Skip process group initialization if xla device or init backend is False |
| # TODO(yeounoh) implement DeviceMesh backend and register XLA backend. |
| if device_type != "xla": |
| # always try to create default (world) pg, even if it is not initialized |
| # already. The world pg is used for device mesh identity (rank) on each |
| # process (we need to know if the current global rank is in the mesh or not). |
| if _init_backend: |
| self._get_or_create_default_group() |
| self._init_process_groups() |
| |
| # calculate the coordinates of the current global rank on the mesh |
| rank_coords = (self.mesh == get_rank()).nonzero() |
| assert rank_coords.size(0) in (0, 1) |
| self._coordinate_on_dim: Optional[List[int]] = ( |
| rank_coords[0].tolist() if rank_coords.size(0) > 0 else None |
| ) |
| |
| def _get_or_create_default_group(self): |
| default_initialized = is_initialized() |
| if not default_initialized: |
| init_process_group() |
| |
| world_size = get_world_size() |
| if self.mesh.numel() > world_size: |
| raise RuntimeError( |
| f"Mesh should not be bigger than default world size, but found {self.mesh.numel()} ranks!" |
| ) |
| |
| device_handle = _get_device_handle(self.device_type) |
| # TODO: if user want to pass pg_options, offer a way to do it |
| if not default_initialized and device_handle: |
| # automatically set the current cuda/cuda-like device base on num of gpu devices available in each host |
| # NOTE: This device selection would only work for homogeneous hardware. |
| num_devices_per_host = device_handle.device_count() |
| if ( |
| world_size > num_devices_per_host |
| and world_size % num_devices_per_host != 0 |
| ): |
| raise RuntimeError( |
| f"DeviceMesh only support homogeneous hardware, but found " |
| f"{world_size} ranks and {num_devices_per_host} {self.device_type} devices!" |
| ) |
| device_handle.set_device(get_rank() % num_devices_per_host) |
| |
| return _get_default_group() |
| |
| def _init_process_groups(self): |
| # tag/ranks/group_name associated with each mesh dimension, each |
| # mesh dimension should have one sub-group per rank |
| # |
| # TODO(yifu): remove tag and ranks once we fully migrate to native |
| # functional collectives. See details in: |
| # https://github.com/pytorch/pytorch/issues/93173#issuecomment-1907095208 |
| dim_group_infos: List[Tuple[str, List[int], str]] = [] |
| |
| if self.mesh.ndim == 1 and self.mesh.numel() == get_world_size(): |
| # if the mesh is the same as world_pg, we just append the default |
| # pg to the first dim groups, as new_group cannot have the exact |
| # same ranks as world |
| dim_group_infos.append( |
| ( |
| _get_group_tag(_get_default_group()), |
| list(range(get_world_size())), |
| _get_default_group().group_name, |
| ) |
| ) |
| else: |
| # create sub pgs base on the mesh argument specified |
| for dim in range(self.mesh.ndim): |
| # swap the current dim to the last dim |
| # then reshape to flatten out other dims |
| pg_ranks_by_dim = self.mesh.swapdims(-1, dim).reshape( |
| -1, self.mesh.size(dim) |
| ) |
| # multi-dim mesh, create subgroups by looping over the pg_ranks |
| # for each dim and append the groups |
| for dim_mesh in pg_ranks_by_dim: |
| subgroup_ranks = dim_mesh.tolist() |
| |
| # We temporarily revert the re-use subgroup, since it breaks two internal tests. |
| # Temporarily reverting to resolve test timeout while root-causing. |
| # TODO: Add two tests to cover internal tests scenarios and re-enable reuse subgroup if exists. |
| dim_group = new_group(ranks=subgroup_ranks) |
| |
| # only add to dim_groups if the current rank in the subgroup |
| if self.get_rank() in subgroup_ranks: |
| if len(dim_group_infos) > dim: |
| raise RuntimeError( |
| f"Each device mesh dimension should get only one process group, but got {self.get_rank} " |
| f"in {subgroup_ranks}!" |
| ) |
| dim_group_infos.append( |
| ( |
| _get_group_tag(not_none(dim_group)), |
| subgroup_ranks, |
| dim_group.group_name, |
| ) |
| ) |
| self._dim_group_infos = dim_group_infos |
| |
| def __enter__(self) -> "DeviceMesh": |
| # set this mesh as the current mesh in mesh env |
| _mesh_resources.mesh_stack.append(self) |
| return self |
| |
| # pyre-fixme[2]: Parameter must be annotated. |
| def __exit__(self, exc_type, exc_value, exc_traceback) -> None: |
| # pop this mesh from mesh env |
| _mesh_resources.mesh_stack.pop() |
| |
| def __repr__(self) -> str: |
| device_mesh_repr = ( |
| f"DeviceMesh({self.mesh.tolist()})" |
| if not self.mesh_dim_names |
| else f"DeviceMesh({self.mesh.tolist()}, mesh_dim_names={self.mesh_dim_names})" |
| ) |
| return device_mesh_repr |
| |
| def __hash__(self): |
| return self._hash |
| |
| def __eq__(self, other: object) -> bool: |
| if not isinstance(other, DeviceMesh): |
| return False |
| if id(self.mesh) == id(other.mesh): |
| return True |
| return ( |
| self.mesh.shape == other.mesh.shape |
| and self._flatten_mesh_list == other._flatten_mesh_list |
| ) |
| |
| def __getitem__(self, mesh_dim_name: str) -> "DeviceMesh": |
| """ |
| Slice the current DeviceMesh based on the mesh_dim_name given to create a child |
| DeviceMesh. |
| |
| Args: |
| mesh_dim_name (str): the name of the mesh dimension of the parent DeviceMesh |
| to create a child DeviceMesh for. |
| Returns: |
| A :class:`DeviceMesh` object |
| |
| The following program runs on each process/rank in an SPMD manner. In this example, we have 2 |
| hosts with 4 GPUs each. |
| Calling mesh["tp"] on rank 0, 1, 2, 3 would return a 1D child DeviceMesh:([0, 1, 2, 3]). |
| Calling mesh["tp"] on rank 4, 5, 6, 7 would return a 1D child DeviceMesh:([4, 5, 6, 7]). |
| Calling mesh["dp"] on rank 0, 4 would return a 1D child DeviceMesh:([0, 4]). |
| Calling mesh["dp"] on rank 1, 5 would return a 1D child DeviceMesh:([1, 5]). |
| Calling mesh["dp"] on rank 2, 6 would return a 1D child DeviceMesh:([2, 6]). |
| Calling mesh["dp"] on rank 3, 7 would return a 1D child DeviceMesh:([3, 7]). |
| |
| Example:: |
| >>> # xdoctest: +SKIP("no rank") |
| >>> from torch.distributed.device_mesh import DeviceMesh |
| >>> |
| >>> # Initialize device mesh as (2, 4) to represent the topology |
| >>> # of cross-host(dim 0), and within-host (dim 1). |
| >>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]]) |
| """ |
| if self.mesh.ndim == 1: |
| if self.mesh_dim_names and mesh_dim_name == self.mesh_dim_names[0]: |
| return self |
| else: |
| raise RuntimeError( |
| f"Invalid mesh_dim_name {mesh_dim_name} specified." |
| ) |
| |
| mesh_dim = _mesh_resources.get_mesh_dim_by_name(self, mesh_dim_name) |
| submesh = _mesh_resources.create_child_mesh(self, mesh_dim, mesh_dim_name) |
| return submesh |
| |
| def get_group( |
| self, mesh_dim: Optional[Union[int, str]] = None |
| ) -> Union[ProcessGroup, List[ProcessGroup]]: |
| """ |
| Returns a list of ProcessGroups corresponding to the mesh dimensions, or |
| returns a single ProcessGroup if mesh_dim is specified or the given mesh has |
| only one mesh dimension. |
| |
| Args: |
| mesh_dim (str/int, optional): it can be the name of the mesh dimension or the index |
| of the mesh dimension. Default is None. |
| |
| Returns: |
| A list of :class:`ProcessGroup` object when `mesh_dim` is not specified for |
| a DeviceMesh with more than 1 dimension; otherwise, returns a single |
| :class:`ProcessGroup` object. |
| """ |
| if not hasattr(self, "_dim_group_infos"): |
| raise RuntimeError("DeviceMesh process groups not initialized!") |
| |
| if self.mesh.ndim == 1: |
| return not_none( |
| _find_pg_by_ranks_and_tag(*self._dim_group_infos[0][:2]) |
| ) |
| |
| if mesh_dim is not None: |
| if isinstance(mesh_dim, str): |
| mesh_dim = _mesh_resources.get_mesh_dim_by_name(self, mesh_dim) |
| return not_none( |
| _find_pg_by_ranks_and_tag(*self._dim_group_infos[mesh_dim][:2]) |
| ) |
| else: |
| dim_groups = [] |
| for ith_dim in range(self.mesh.ndim): |
| dim_groups.append( |
| not_none( |
| _find_pg_by_ranks_and_tag( |
| *self._dim_group_infos[ith_dim][:2] |
| ) |
| ) |
| ) |
| return dim_groups |
| |
| def size(self, mesh_dim: Optional[int] = None) -> int: |
| return self.mesh.numel() if mesh_dim is None else self.mesh.size(mesh_dim) |
| |
| @property |
| def ndim(self) -> int: |
| return self.mesh.ndim |
| |
| @property |
| def shape(self) -> Tuple[int, ...]: |
| return tuple(self.mesh.shape) |
| |
| def get_rank(self) -> int: |
| """ |
| Returns the current global rank. |
| """ |
| return get_rank() |
| |
| def get_local_rank(self, mesh_dim: Optional[Union[int, str]] = None) -> int: |
| """ |
| Returns the local rank of the given mesh_dim of the DeviceMesh. |
| |
| Args: |
| mesh_dim (str/int, optional): it can be the name of the mesh dimension or the index |
| of the mesh dimension. Default is None. |
| |
| Returns: |
| An integer denotes the local rank. |
| |
| The following program runs on each process/rank in an SPMD manner. In this example, we have 2 |
| hosts with 4 GPUs each. |
| Calling mesh_2d.get_local_rank(mesh_dim=0) on rank 0, 1, 2, 3 would return 0. |
| Calling mesh_2d.get_local_rank(mesh_dim=0) on rank 4, 5, 6, 7 would return 1. |
| Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 0, 4 would return 0. |
| Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 1, 5 would return 1. |
| Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 2, 6 would return 2. |
| Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 3, 7 would return 3. |
| |
| Example:: |
| >>> # xdoctest: +SKIP("no rank") |
| >>> from torch.distributed.device_mesh import DeviceMesh |
| >>> |
| >>> # Initialize device mesh as (2, 4) to represent the topology |
| >>> # of cross-host(dim 0), and within-host (dim 1). |
| >>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]]) |
| """ |
| if self.ndim > 1 and mesh_dim is None: |
| raise RuntimeError( |
| f"Found the DeviceMesh have {self.mesh.ndim} dimensions", |
| "Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.", |
| ) |
| elif mesh_dim is None: |
| mesh_dim = 0 |
| |
| mesh_dim_group = not_none(self.get_group(mesh_dim)) |
| assert isinstance( |
| mesh_dim_group, ProcessGroup |
| ), "We expect ProcessGroup before calling `get_rank`!" |
| return not_none(get_rank(mesh_dim_group)) |
| |
| def get_coordinate(self) -> Optional[List[int]]: |
| """ |
| Return the relative indices of this rank relative to all |
| dimensions of the mesh. If this rank is not part of the mesh, return None. |
| """ |
| return self._coordinate_on_dim if self._coordinate_on_dim else None |
| |
| def init_device_mesh( |
| device_type: str, |
| mesh_shape: Tuple[int, ...], |
| *, |
| mesh_dim_names: Optional[Tuple[str, ...]] = None, |
| ) -> DeviceMesh: |
| """ |
| Initializes a `DeviceMesh` based on `device_type`, `mesh_shape`, and `mesh_dim_names` parameters. |
| |
| This creates a DeviceMesh with an n-dimensional array layout, where `n` is the length of `mesh_shape`. |
| If `mesh_dim_names` is provided, each dimension is labeled as `mesh_dim_names[i]`. |
| |
| .. note:: |
| `init_device_mesh` follows SPMD programming model, meaning the same PyTorch Python program |
| runs on all processes/ranks in the cluster. Ensure `mesh_shape` (the dimensions of the nD array |
| describing device layout) is identical across all ranks. Inconsistent `mesh_shape` may lead to hanging. |
| |
| .. note:: |
| If no process group is found, init_device_mesh will initialize distributed process group/groups |
| required for distributed communications behind the scene. |
| |
| Args: |
| device_type (str): The device type of the mesh. Currently supports: "cpu", "cuda/cuda-like". |
| mesh_shape (Tuple[int]): A tuple defining the dimensions of the multi-dimensional array |
| describing the layout of devices. |
| mesh_dim_names (Tuple[str], optional): A tuple of mesh dimension names to assign to each dimension |
| of the multi-dimensional array describing the layout of devices. Its length must match the length |
| of `mesh_shape`. Each string in `mesh_dim_names` must be unique. |
| |
| Returns: |
| DeviceMesh: A :class:`DeviceMesh` object representing the device layout. |
| |
| Example:: |
| >>> # xdoctest: +SKIP("no rank") |
| >>> from torch.distributed.device_mesh import init_device_mesh |
| >>> |
| >>> mesh_1d = init_device_mesh("cuda", mesh_shape=(8,)) |
| >>> mesh_2d = init_device_mesh("cuda", mesh_shape=(2, 8), mesh_dim_names=("dp", "tp")) |
| |
| """ |
| if mesh_dim_names is not None: |
| if len(set(mesh_dim_names)) != len(mesh_dim_names): |
| raise RuntimeError( |
| "Each mesh_dim_name must be unique.", |
| f"Found repeated mesh_dim_name in mesh_dim_names {mesh_dim_names}", |
| ) |
| |
| if len(mesh_shape) != len(mesh_dim_names): |
| raise RuntimeError( |
| "mesh_shape and mesh_dim_names should have same length!", |
| f"Found len(mesh_dim_names): {len(mesh_dim_names)} and len(mesh_shape):{len(mesh_shape)}.", |
| ) |
| |
| # Always initialize the mesh's tensor on CPU, regardless of what the |
| # external device type has been set to be (e.g. meta) |
| with torch.device("cpu"): |
| mesh = torch.arange(math.prod(mesh_shape), dtype=torch.int).view(mesh_shape) |
| device_mesh = DeviceMesh( |
| device_type=device_type, |
| mesh=mesh, |
| mesh_dim_names=mesh_dim_names, |
| ) |
| |
| return device_mesh |