| from __future__ import print_function |
| import sys |
| import os |
| import math |
| import shutil |
| import random |
| import tempfile |
| import unittest |
| import traceback |
| import torch |
| import torch.cuda |
| import warnings |
| from torch.autograd import Variable |
| from torch.utils.trainer import Trainer |
| from torch.utils.trainer.plugins import * |
| from torch.utils.trainer.plugins.plugin import Plugin |
| from torch.utils.serialization import load_lua |
| |
| HAS_CUDA = torch.cuda.is_available() |
| |
| from common import TestCase, run_tests, download_file |
| |
| try: |
| import cffi |
| from torch.utils.ffi import compile_extension |
| HAS_CFFI = True |
| except ImportError: |
| HAS_CFFI = False |
| |
| |
| class SimplePlugin(Plugin): |
| |
| def __init__(self, interval): |
| super(SimplePlugin, self).__init__(interval) |
| self.trainer = None |
| self.num_iteration = 0 |
| self.num_epoch = 0 |
| self.num_batch = 0 |
| self.num_update = 0 |
| |
| def register(self, trainer): |
| self.trainer = trainer |
| |
| def iteration(self, *args): |
| self.iteration_args = args |
| self.num_iteration += 1 |
| |
| def epoch(self, *args): |
| self.epoch_args = args |
| self.num_epoch += 1 |
| |
| def batch(self, *args): |
| self.batch_args = args |
| self.num_batch += 1 |
| |
| def update(self, *args): |
| self.update_args = args |
| self.num_update += 1 |
| |
| |
| class ModelMock(object): |
| |
| def __init__(self): |
| self.num_calls = 0 |
| self.output = Variable(torch.ones(1, 1), requires_grad=True) |
| |
| def __call__(self, i): |
| self.num_calls += 1 |
| return self.output * 2 |
| |
| |
| class CriterionMock(object): |
| |
| def __init__(self): |
| self.num_calls = 0 |
| |
| def __call__(self, out, target): |
| self.num_calls += 1 |
| return out |
| |
| |
| class OptimizerMock(object): |
| max_evals = 5 |
| min_evals = 1 |
| |
| def __init__(self): |
| self.num_steps = 0 |
| self.num_evals = 0 |
| |
| def step(self, closure): |
| for i in range(random.randint(self.min_evals, self.max_evals)): |
| loss = closure() |
| self.num_evals += 1 |
| self.num_steps += 1 |
| |
| def zero_grad(self): |
| pass |
| |
| |
| class DatasetMock(object): |
| |
| def __iter__(self): |
| for i in range(10): |
| yield torch.randn(2, 10), torch.randperm(10)[:2] |
| |
| def __len__(self): |
| return 10 |
| |
| |
| class TestTrainer(TestCase): |
| |
| intervals = [ |
| [(1, 'iteration')], |
| [(1, 'epoch')], |
| [(1, 'batch')], |
| [(1, 'update')], |
| [(5, 'iteration')], |
| [(5, 'epoch')], |
| [(5, 'batch')], |
| [(5, 'update')], |
| [(1, 'iteration'), (1, 'epoch')], |
| [(5, 'update'), (1, 'iteration')], |
| [(2, 'epoch'), (1, 'batch')], |
| ] |
| |
| def setUp(self): |
| self.optimizer = OptimizerMock() |
| self.trainer = Trainer(ModelMock(), CriterionMock(), |
| self.optimizer, DatasetMock()) |
| self.num_epochs = 3 |
| self.dataset_size = len(self.trainer.dataset) |
| self.num_iters = self.num_epochs * self.dataset_size |
| |
| def test_register_plugin(self): |
| for interval in self.intervals: |
| simple_plugin = SimplePlugin(interval) |
| self.trainer.register_plugin(simple_plugin) |
| self.assertEqual(simple_plugin.trainer, self.trainer) |
| |
| def test_optimizer_step(self): |
| self.trainer.run(epochs=1) |
| self.assertEqual(self.trainer.optimizer.num_steps, 10) |
| |
| def test_plugin_interval(self): |
| for interval in self.intervals: |
| self.setUp() |
| simple_plugin = SimplePlugin(interval) |
| self.trainer.register_plugin(simple_plugin) |
| self.trainer.run(epochs=self.num_epochs) |
| units = { |
| ('iteration', self.num_iters), |
| ('epoch', self.num_epochs), |
| ('batch', self.num_iters), |
| ('update', self.num_iters) |
| } |
| for unit, num_triggers in units: |
| call_every = None |
| for i, i_unit in interval: |
| if i_unit == unit: |
| call_every = i |
| break |
| if call_every: |
| expected_num_calls = math.floor(num_triggers / call_every) |
| else: |
| expected_num_calls = 0 |
| num_calls = getattr(simple_plugin, 'num_' + unit) |
| self.assertEqual(num_calls, expected_num_calls, 0) |
| |
| def test_model_called(self): |
| self.trainer.run(epochs=self.num_epochs) |
| num_model_calls = self.trainer.model.num_calls |
| num_crit_calls = self.trainer.criterion.num_calls |
| self.assertEqual(num_model_calls, num_crit_calls) |
| for num_calls in [num_model_calls, num_crit_calls]: |
| lower_bound = OptimizerMock.min_evals * self.num_iters |
| upper_bound = OptimizerMock.max_evals * self.num_iters |
| self.assertEqual(num_calls, self.trainer.optimizer.num_evals) |
| self.assertLessEqual(lower_bound, num_calls) |
| self.assertLessEqual(num_calls, upper_bound) |
| |
| def test_model_gradient(self): |
| self.trainer.run(epochs=self.num_epochs) |
| output_var = self.trainer.model.output |
| expected_grad = torch.ones(1, 1) * 2 * self.optimizer.num_evals |
| self.assertEqual(output_var.grad.data, expected_grad) |
| |
| |
| test_dir = os.path.abspath(os.path.dirname(str(__file__))) |
| |
| |
| class TestFFI(TestCase): |
| |
| def setUp(self): |
| self.tmpdir = tempfile.mkdtemp() |
| os.chdir(self.tmpdir) |
| sys.path.append(self.tmpdir) |
| |
| def tearDown(self): |
| shutil.rmtree(self.tmpdir) |
| |
| @unittest.skipIf(not HAS_CFFI, "ffi tests require cffi package") |
| def test_cpu(self): |
| compile_extension( |
| name='test_extensions.cpulib', |
| header=test_dir + '/ffi/src/cpu/lib.h', |
| sources=[ |
| test_dir + '/ffi/src/cpu/lib1.c', |
| test_dir + '/ffi/src/cpu/lib2.c', |
| ], |
| verbose=False, |
| ) |
| from test_extensions import cpulib |
| tensor = torch.ones(2, 2).float() |
| |
| cpulib.good_func(tensor, 2, 1.5) |
| self.assertEqual(tensor, torch.ones(2, 2) * 2 + 1.5) |
| |
| new_tensor = cpulib.new_tensor(4) |
| self.assertEqual(new_tensor, torch.ones(4, 4) * 4) |
| |
| f = cpulib.int_to_float(5) |
| self.assertIs(type(f), float) |
| |
| self.assertRaises(TypeError, |
| lambda: cpulib.good_func(tensor.double(), 2, 1.5)) |
| self.assertRaises(torch.FatalError, |
| lambda: cpulib.bad_func(tensor, 2, 1.5)) |
| |
| @unittest.skipIf(not HAS_CFFI or not HAS_CUDA, "ffi tests require cffi package") |
| def test_gpu(self): |
| compile_extension( |
| name='gpulib', |
| header=test_dir + '/ffi/src/cuda/cudalib.h', |
| sources=[ |
| test_dir + '/ffi/src/cuda/cudalib.c', |
| ], |
| with_cuda=True, |
| verbose=False, |
| ) |
| import gpulib |
| tensor = torch.ones(2, 2).float() |
| |
| gpulib.good_func(tensor, 2, 1.5) |
| self.assertEqual(tensor, torch.ones(2, 2) * 2 + 1.5) |
| |
| ctensor = tensor.cuda().fill_(1) |
| gpulib.cuda_func(ctensor, 2, 1.5) |
| self.assertEqual(ctensor, torch.ones(2, 2) * 2 + 1.5) |
| |
| self.assertRaises(TypeError, |
| lambda: gpulib.cuda_func(tensor, 2, 1.5)) |
| self.assertRaises(TypeError, |
| lambda: gpulib.cuda_func(ctensor.storage(), 2, 1.5)) |
| |
| |
| class TestLuaReader(TestCase): |
| |
| @staticmethod |
| def _module_test(name, test): |
| def do_test(self): |
| module = test['module'] |
| input = test['input'] |
| grad_output = test['grad_output'] |
| if hasattr(self, '_transform_' + name): |
| input = getattr(self, '_transform_' + name)(input) |
| output = module.forward(input) |
| module.zeroGradParameters() |
| grad_input = module.backward(input, grad_output) |
| self.assertEqual(output, test['output']) |
| self.assertEqual(grad_input, test['grad_input']) |
| if module.parameters() is not None: |
| params, d_params = module.parameters() |
| self.assertEqual(params, test['params']) |
| self.assertEqual(d_params, test['d_params']) |
| else: |
| self.assertFalse('params' in test and test['params']) |
| self.assertFalse('params' in test and test['d_params']) |
| return do_test |
| |
| @staticmethod |
| def _criterion_test(name, test): |
| def do_test(self): |
| module = test['module'] |
| input = test['input'] |
| if name == 'L1Cost': |
| target = None |
| else: |
| target = test['target'] |
| if hasattr(self, '_transform_' + name): |
| input, target = getattr(self, '_transform_' + name)(input, target) |
| |
| output = module.forward(input, target) |
| grad_input = module.backward(input, target) |
| self.assertEqual(output, test['loss']) |
| self.assertEqual(grad_input, test['grad_input']) |
| return do_test |
| |
| @classmethod |
| def init(cls): |
| DATA_URL = 'https://download.pytorch.org/test_data/legacy_modules.t7' |
| data_dir = os.path.join(os.path.dirname(__file__), 'data') |
| test_file_path = os.path.join(data_dir, 'legacy_modules.t7') |
| succ = download_file(DATA_URL, test_file_path) |
| if not succ: |
| warnings.warn(("Couldn't download the test file for TestLuaReader! " |
| "Tests will be incomplete!"), RuntimeWarning) |
| return |
| |
| tests = load_lua(test_file_path) |
| for name, test in tests['modules'].items(): |
| test_name = 'test_' + name.replace('nn.', '') |
| setattr(cls, test_name, cls._module_test(name, test)) |
| for name, test in tests['criterions'].items(): |
| test_name = 'test_' + name.replace('nn.', '') |
| setattr(cls, test_name, cls._criterion_test(name, test)) |
| |
| def _transform_Index(self, input): |
| return [input[0], input[1].sub(1)] |
| |
| def _transform_LookupTable(self, input): |
| return input.sub(1) |
| |
| def _transform_MultiLabelMarginCriterion(self, input, target): |
| return input, target.sub(1) |
| |
| def _transform_ClassNLLCriterion(self, input, target): |
| return input, target.sub(1) |
| |
| def _transform_SpatialClassNLLCriterion(self, input, target): |
| return input, target.sub(1) |
| |
| def _transform_ClassSimplexCriterion(self, input, target): |
| return input, target.sub(1) |
| |
| def _transform_CrossEntropyCriterion(self, input, target): |
| return input, target.sub(1) |
| |
| def _transform_ParallelCriterion(self, input, target): |
| return input, [target[0].sub(1), target[1]] |
| |
| def _transform_MultiCriterion(self, input, target): |
| return input, target.sub(1) |
| |
| def _transform_MultiMarginCriterion(self, input, target): |
| return input, target.sub(1) |
| |
| |
| TestLuaReader.init() |
| if __name__ == '__main__': |
| run_tests() |