| import math |
| import random |
| |
| import torch |
| from torch.autograd import Variable |
| |
| |
| def calculate_gain(nonlinearity, param=None): |
| """Return the recommended gain value for the given nonlinearity function. |
| The values are as follows: |
| |
| ============ ========================================== |
| nonlinearity gain |
| ============ ========================================== |
| linear :math:`1` |
| conv{1,2,3}d :math:`1` |
| sigmoid :math:`1` |
| tanh :math:`5 / 3` |
| relu :math:`\sqrt{2}` |
| leaky_relu :math:`\sqrt{2 / (1 + negative\_slope^2)}` |
| ============ ========================================== |
| |
| Args: |
| nonlinearity: the nonlinear function (`nn.functional` name) |
| param: optional parameter for the nonlinear function |
| |
| Examples: |
| >>> gain = nn.init.calculate_gain('leaky_relu') |
| """ |
| linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d'] |
| if nonlinearity in linear_fns or nonlinearity == 'sigmoid': |
| return 1 |
| elif nonlinearity == 'tanh': |
| return 5.0 / 3 |
| elif nonlinearity == 'relu': |
| return math.sqrt(2.0) |
| elif nonlinearity == 'leaky_relu': |
| if param is None: |
| negative_slope = 0.01 |
| elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): |
| # True/False are instances of int, hence check above |
| negative_slope = param |
| else: |
| raise ValueError("negative_slope {} not a valid number".format(param)) |
| return math.sqrt(2.0 / (1 + negative_slope ** 2)) |
| else: |
| raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) |
| |
| |
| def uniform(tensor, a=0, b=1): |
| """Fills the input Tensor or Variable with values drawn from the uniform |
| distribution :math:`U(a, b)`. |
| |
| Args: |
| tensor: an n-dimensional torch.Tensor or autograd.Variable |
| a: the lower bound of the uniform distribution |
| b: the upper bound of the uniform distribution |
| |
| Examples: |
| >>> w = torch.Tensor(3, 5) |
| >>> nn.init.uniform(w) |
| """ |
| if isinstance(tensor, Variable): |
| uniform(tensor.data, a=a, b=b) |
| return tensor |
| |
| return tensor.uniform_(a, b) |
| |
| |
| def normal(tensor, mean=0, std=1): |
| """Fills the input Tensor or Variable with values drawn from the normal |
| distribution :math:`N(mean, std)`. |
| |
| Args: |
| tensor: an n-dimensional torch.Tensor or autograd.Variable |
| mean: the mean of the normal distribution |
| std: the standard deviation of the normal distribution |
| |
| Examples: |
| >>> w = torch.Tensor(3, 5) |
| >>> nn.init.normal(w) |
| """ |
| if isinstance(tensor, Variable): |
| normal(tensor.data, mean=mean, std=std) |
| return tensor |
| |
| return tensor.normal_(mean, std) |
| |
| |
| def constant(tensor, val): |
| """Fills the input Tensor or Variable with the value `val`. |
| |
| Args: |
| tensor: an n-dimensional torch.Tensor or autograd.Variable |
| val: the value to fill the tensor with |
| |
| Examples: |
| >>> w = torch.Tensor(3, 5) |
| >>> nn.init.constant(w, 0.3) |
| """ |
| if isinstance(tensor, Variable): |
| constant(tensor.data, val) |
| return tensor |
| |
| return tensor.fill_(val) |
| |
| |
| def eye(tensor): |
| """Fills the 2-dimensional input Tensor or Variable with the identity |
| matrix. Preserves the identity of the inputs in Linear layers, where as |
| many inputs are preserved as possible. |
| |
| Args: |
| tensor: a 2-dimensional torch.Tensor or autograd.Variable |
| |
| Examples: |
| >>> w = torch.Tensor(3, 5) |
| >>> nn.init.eye(w) |
| """ |
| if tensor.ndimension() != 2: |
| raise ValueError("Only tensors with 2 dimensions are supported") |
| |
| if isinstance(tensor, Variable): |
| eye(tensor.data) |
| return tensor |
| |
| return tensor.copy_(torch.eye(tensor.size(0), tensor.size(1))) |
| |
| |
| def dirac(tensor): |
| """Fills the {3, 4, 5}-dimensional input Tensor or Variable with the Dirac |
| delta function. Preserves the identity of the inputs in Convolutional |
| layers, where as many input channels are preserved as possible. |
| |
| Args: |
| tensor: a {3, 4, 5}-dimensional torch.Tensor or autograd.Variable |
| |
| Examples: |
| >>> w = torch.Tensor(3, 16, 5, 5) |
| >>> nn.init.dirac(w) |
| """ |
| dimensions = tensor.ndimension() |
| if dimensions not in [3, 4, 5]: |
| raise ValueError("Only tensors with 3, 4, or 5 dimensions are supported") |
| |
| if isinstance(tensor, Variable): |
| dirac(tensor.data) |
| return tensor |
| |
| sizes = tensor.size() |
| min_dim = min(sizes[0], sizes[1]) |
| tensor.zero_() |
| |
| for d in range(min_dim): |
| if dimensions == 3: # Temporal convolution |
| tensor[d, d, tensor.size(2) // 2] = 1 |
| elif dimensions == 4: # Spatial convolution |
| tensor[d, d, tensor.size(2) // 2, tensor.size(3) // 2] = 1 |
| else: # Volumetric convolution |
| tensor[d, d, tensor.size(2) // 2, tensor.size(3) // 2, tensor.size(4) // 2] = 1 |
| return tensor |
| |
| |
| def _calculate_fan_in_and_fan_out(tensor): |
| dimensions = tensor.ndimension() |
| if dimensions < 2: |
| raise ValueError("Fan in and fan out can not be computed for tensor with less than 2 dimensions") |
| |
| if dimensions == 2: # Linear |
| fan_in = tensor.size(1) |
| fan_out = tensor.size(0) |
| else: |
| num_input_fmaps = tensor.size(1) |
| num_output_fmaps = tensor.size(0) |
| receptive_field_size = 1 |
| if tensor.dim() > 2: |
| receptive_field_size = tensor[0][0].numel() |
| fan_in = num_input_fmaps * receptive_field_size |
| fan_out = num_output_fmaps * receptive_field_size |
| |
| return fan_in, fan_out |
| |
| |
| def xavier_uniform(tensor, gain=1): |
| """Fills the input Tensor or Variable with values according to the method |
| described in "Understanding the difficulty of training deep feedforward |
| neural networks" - Glorot, X. & Bengio, Y. (2010), using a uniform |
| distribution. The resulting tensor will have values sampled from |
| :math:`U(-a, a)` where |
| :math:`a = gain \\times \sqrt{2 / (fan\_in + fan\_out)} \\times \sqrt{3}`. |
| Also known as Glorot initialisation. |
| |
| Args: |
| tensor: an n-dimensional torch.Tensor or autograd.Variable |
| gain: an optional scaling factor |
| |
| Examples: |
| >>> w = torch.Tensor(3, 5) |
| >>> nn.init.xavier_uniform(w, gain=nn.init.calculate_gain('relu')) |
| """ |
| if isinstance(tensor, Variable): |
| xavier_uniform(tensor.data, gain=gain) |
| return tensor |
| |
| fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) |
| std = gain * math.sqrt(2.0 / (fan_in + fan_out)) |
| a = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation |
| return tensor.uniform_(-a, a) |
| |
| |
| def xavier_normal(tensor, gain=1): |
| """Fills the input Tensor or Variable with values according to the method |
| described in "Understanding the difficulty of training deep feedforward |
| neural networks" - Glorot, X. & Bengio, Y. (2010), using a normal |
| distribution. The resulting tensor will have values sampled from |
| :math:`N(0, std)` where |
| :math:`std = gain \\times \sqrt{2 / (fan\_in + fan\_out)}`. |
| Also known as Glorot initialisation. |
| |
| Args: |
| tensor: an n-dimensional torch.Tensor or autograd.Variable |
| gain: an optional scaling factor |
| |
| Examples: |
| >>> w = torch.Tensor(3, 5) |
| >>> nn.init.xavier_normal(w) |
| """ |
| if isinstance(tensor, Variable): |
| xavier_normal(tensor.data, gain=gain) |
| return tensor |
| |
| fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) |
| std = gain * math.sqrt(2.0 / (fan_in + fan_out)) |
| return tensor.normal_(0, std) |
| |
| |
| def _calculate_correct_fan(tensor, mode): |
| mode = mode.lower() |
| valid_modes = ['fan_in', 'fan_out'] |
| if mode not in valid_modes: |
| raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes)) |
| |
| fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) |
| return fan_in if mode == 'fan_in' else fan_out |
| |
| |
| def kaiming_uniform(tensor, a=0, mode='fan_in'): |
| """Fills the input Tensor or Variable with values according to the method |
| described in "Delving deep into rectifiers: Surpassing human-level |
| performance on ImageNet classification" - He, K. et al. (2015), using a |
| uniform distribution. The resulting tensor will have values sampled from |
| :math:`U(-bound, bound)` where |
| :math:`bound = \sqrt{2 / ((1 + a^2) \\times fan\_in)} \\times \sqrt{3}`. |
| Also known as He initialisation. |
| |
| Args: |
| tensor: an n-dimensional torch.Tensor or autograd.Variable |
| a: the negative slope of the rectifier used after this layer (0 for ReLU |
| by default) |
| mode: either 'fan_in' (default) or 'fan_out'. Choosing `fan_in` |
| preserves the magnitude of the variance of the weights in the |
| forward pass. Choosing `fan_out` preserves the magnitudes in the |
| backwards pass. |
| |
| Examples: |
| >>> w = torch.Tensor(3, 5) |
| >>> nn.init.kaiming_uniform(w, mode='fan_in') |
| """ |
| if isinstance(tensor, Variable): |
| kaiming_uniform(tensor.data, a=a, mode=mode) |
| return tensor |
| |
| fan = _calculate_correct_fan(tensor, mode) |
| gain = calculate_gain('leaky_relu', a) |
| std = gain / math.sqrt(fan) |
| bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation |
| return tensor.uniform_(-bound, bound) |
| |
| |
| def kaiming_normal(tensor, a=0, mode='fan_in'): |
| """Fills the input Tensor or Variable with values according to the method |
| described in "Delving deep into rectifiers: Surpassing human-level |
| performance on ImageNet classification" - He, K. et al. (2015), using a |
| normal distribution. The resulting tensor will have values sampled from |
| :math:`N(0, std)` where |
| :math:`std = \sqrt{2 / ((1 + a^2) \\times fan\_in)}`. Also known as He |
| initialisation. |
| |
| Args: |
| tensor: an n-dimensional torch.Tensor or autograd.Variable |
| a: the negative slope of the rectifier used after this layer (0 for ReLU |
| by default) |
| mode: either 'fan_in' (default) or 'fan_out'. Choosing `fan_in` |
| preserves the magnitude of the variance of the weights in the |
| forward pass. Choosing `fan_out` preserves the magnitudes in the |
| backwards pass. |
| |
| Examples: |
| >>> w = torch.Tensor(3, 5) |
| >>> nn.init.kaiming_normal(w, mode='fan_out') |
| """ |
| if isinstance(tensor, Variable): |
| kaiming_normal(tensor.data, a=a, mode=mode) |
| return tensor |
| |
| fan = _calculate_correct_fan(tensor, mode) |
| gain = calculate_gain('leaky_relu', a) |
| std = gain / math.sqrt(fan) |
| return tensor.normal_(0, std) |
| |
| |
| def orthogonal(tensor, gain=1): |
| """Fills the input Tensor or Variable with a (semi) orthogonal matrix, as |
| described in "Exact solutions to the nonlinear dynamics of learning in deep |
| linear neural networks" - Saxe, A. et al. (2013). The input tensor must have |
| at least 2 dimensions, and for tensors with more than 2 dimensions the |
| trailing dimensions are flattened. |
| |
| Args: |
| tensor: an n-dimensional torch.Tensor or autograd.Variable, where n >= 2 |
| gain: optional scaling factor |
| |
| Examples: |
| >>> w = torch.Tensor(3, 5) |
| >>> nn.init.orthogonal(w) |
| """ |
| if isinstance(tensor, Variable): |
| orthogonal(tensor.data, gain=gain) |
| return tensor |
| |
| if tensor.ndimension() < 2: |
| raise ValueError("Only tensors with 2 or more dimensions are supported") |
| |
| rows = tensor.size(0) |
| cols = tensor[0].numel() |
| flattened = torch.Tensor(rows, cols).normal_(0, 1) |
| |
| if rows < cols: |
| flattened.t_() |
| |
| # Compute the qr factorization |
| q, r = torch.qr(flattened) |
| # Make Q uniform according to https://arxiv.org/pdf/math-ph/0609050.pdf |
| d = torch.diag(r, 0) |
| ph = d.sign() |
| q *= ph.expand_as(q) |
| |
| if rows < cols: |
| q.t_() |
| |
| tensor.view_as(q).copy_(q) |
| tensor.mul_(gain) |
| return tensor |
| |
| |
| def sparse(tensor, sparsity, std=0.01): |
| """Fills the 2D input Tensor or Variable as a sparse matrix, where the |
| non-zero elements will be drawn from the normal distribution |
| :math:`N(0, 0.01)`, as described in "Deep learning via |
| Hessian-free optimization" - Martens, J. (2010). |
| |
| Args: |
| tensor: an n-dimensional torch.Tensor or autograd.Variable |
| sparsity: The fraction of elements in each column to be set to zero |
| std: the standard deviation of the normal distribution used to generate |
| the non-zero values |
| |
| Examples: |
| >>> w = torch.Tensor(3, 5) |
| >>> nn.init.sparse(w, sparsity=0.1) |
| """ |
| if isinstance(tensor, Variable): |
| sparse(tensor.data, sparsity, std=std) |
| return tensor |
| |
| if tensor.ndimension() != 2: |
| raise ValueError("Only tensors with 2 dimensions are supported") |
| |
| tensor.normal_(0, std) |
| rows, cols = tensor.size(0), tensor.size(1) |
| num_zeros = int(math.ceil(rows * sparsity)) |
| |
| for col_idx in range(tensor.size(1)): |
| row_indices = list(range(rows)) |
| random.shuffle(row_indices) |
| zero_indices = row_indices[:num_zeros] |
| for row_idx in zero_indices: |
| tensor[row_idx, col_idx] = 0 |
| |
| return tensor |