blob: b8c83b9b681f37b6b9b73c4ba0c6b09a5e9c85cd [file] [log] [blame]
import torch
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes
class TestForeach(TestCase):
@dtypes(*torch.testing.get_all_dtypes())
def test_int_scalar(self, device, dtype):
tensors = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
int_scalar = 1
# bool tensor + 1 will result in int64 tensor
if dtype == torch.bool:
expected = [torch.ones(10, 10, device=device, dtype=torch.int64) for _ in range(10)]
else:
expected = [torch.ones(10, 10, device=device, dtype=dtype) for _ in range(10)]
res = torch._foreach_add(tensors, int_scalar)
self.assertEqual(res, expected)
if dtype in [torch.bool]:
with self.assertRaisesRegex(RuntimeError, "result type Long can't be cast to the desired output type Bool"):
torch._foreach_add_(tensors, int_scalar)
else:
torch._foreach_add_(tensors, int_scalar)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_float_scalar(self, device, dtype):
tensors = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
float_scalar = 1.
# float scalar + integral tensor will result in float tensor
if dtype in [torch.uint8, torch.int8, torch.int16,
torch.int32, torch.int64, torch.bool]:
expected = [torch.ones(10, 10, device=device, dtype=torch.float32) for _ in range(10)]
else:
expected = [torch.ones(10, 10, device=device, dtype=dtype) for _ in range(10)]
res = torch._foreach_add(tensors, float_scalar)
self.assertEqual(res, expected)
if dtype in [torch.uint8, torch.int8, torch.int16,
torch.int32, torch.int64, torch.bool]:
self.assertRaises(RuntimeError, lambda: torch._foreach_add_(tensors, float_scalar))
else:
torch._foreach_add_(tensors, float_scalar)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_complex_scalar(self, device, dtype):
tensors = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
complex_scalar = 3 + 5j
# bool tensor + 1 will result in int64 tensor
expected = [torch.add(complex_scalar, torch.zeros(10, 10, device=device, dtype=dtype)) for _ in range(10)]
if dtype in [torch.float16, torch.float32, torch.float64, torch.bfloat16] and device == 'cuda:0':
# value cannot be converted to dtype without overflow:
self.assertRaises(RuntimeError, lambda: torch._foreach_add_(tensors, complex_scalar))
self.assertRaises(RuntimeError, lambda: torch._foreach_add(tensors, complex_scalar))
return
res = torch._foreach_add(tensors, complex_scalar)
self.assertEqual(res, expected)
if dtype not in [torch.complex64, torch.complex128]:
self.assertRaises(RuntimeError, lambda: torch._foreach_add_(tensors, complex_scalar))
else:
torch._foreach_add_(tensors, complex_scalar)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_bool_scalar(self, device, dtype):
tensors = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
bool_scalar = True
expected = [torch.ones(10, 10, device=device, dtype=dtype) for _ in range(10)]
res = torch._foreach_add(tensors, bool_scalar)
self.assertEqual(res, expected)
torch._foreach_add_(tensors, bool_scalar)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_scalar_with_different_size_tensors(self, device, dtype):
if dtype == torch.bool:
return
tensors = [torch.zeros(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]
expected = [torch.ones(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]
torch._foreach_add_(tensors, 1)
self.assertEqual(expected, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
# TODO: enable empty list case
for tensors in [[torch.randn([0])]]:
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, tensors)
torch._foreach_add_(tensors, 1)
self.assertEqual(res, tensors)
@dtypes(*torch.testing.get_all_dtypes())
def test_add_scalar_with_overlapping_tensors(self, device, dtype):
tensors = [torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)]
expected = [torch.tensor([[[2, 2, 2]], [[2, 2, 2]]], dtype=dtype, device=device)]
# bool tensor + 1 will result in int64 tensor
if dtype == torch.bool:
expected[0] = expected[0].to(torch.int64).add(1)
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, expected)
def test_add_scalar_with_different_tensor_dtypes(self, device):
tensors = [torch.tensor([1.1], dtype=torch.float, device=device),
torch.tensor([1], dtype=torch.long, device=device)]
self.assertRaises(RuntimeError, lambda: torch._foreach_add(tensors, 1))
instantiate_device_type_tests(TestForeach, globals())
if __name__ == '__main__':
run_tests()