blob: b4a2f3a7a9164cb97930f3b5be5fb8049646636c [file] [log] [blame]
#pragma once
#include <torch/csrc/jit/codegen/cuda/executor.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/kernel_cache.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/ops/all_ops.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h>
#include <benchmark/benchmark.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/torch.h>
#include <cuda_runtime.h>
using namespace torch::jit::fuser::cuda;
std::string toString(ReductionParams rparams);
std::string toString(PointwiseParams params);
std::string toString(LaunchParams lparams);
// Run benchmark iterations with provided inputs. If not segmented, report
// kernel time from the runtime, as well as heuristic parameters. If segmented
// use timers. Make sure to clear L2 between iterations.
void runBenchmarkIterations(
benchmark::State& benchmark_state,
FusionExecutorCache* fusion_executor_cache,
std::vector<c10::IValue>& aten_inputs);
void clearL2Cache();
// Make a tensor that is known to be fully contiguous of dimensionality=ndims,
// but unknown sizes. Taken from test_gpu.cpp
TensorView* makeContigTensor(size_t ndims, DataType dtype = DataType::Float);
class CudaKernelTimer {
public:
CudaKernelTimer() {
// Setup
cudaEventCreate(&start_event);
cudaEventCreate(&finish_event);
cudaEventRecord(start_event);
}
~CudaKernelTimer() {
cudaEventDestroy(start_event);
cudaEventDestroy(finish_event);
}
void restart() {
cudaEventRecord(start_event);
}
float elapsed() {
// Record
cudaEventRecord(finish_event);
cudaEventSynchronize(start_event);
cudaEventSynchronize(finish_event);
cudaEventElapsedTime(&kernel_time_ms_, start_event, finish_event);
return kernel_time_ms_;
}
private:
// Create
float kernel_time_ms_ = 0;
cudaEvent_t start_event = {};
cudaEvent_t finish_event = {};
};
namespace executorCache {
using ExecutorPtr = std::unique_ptr<FusionExecutorCache>;
using ExecutorMap = std::unordered_map<std::string, ExecutorPtr>;
ExecutorMap& getGlobalMap();
} // namespace executorCache
//! Utility to manage FusionExecutorCache instances for
//! all defined benchmarks
class BenchmarkGraph : public benchmark::Fixture {
public:
using SetupFusionFunction = std::function<void(Fusion*)>;
using SetupFusionMap = std::unordered_map<std::string, SetupFusionFunction>;
virtual std::string graphName() = 0;
virtual SetupFusionFunction setupFusion() = 0;
FusionExecutorCache* getExecutorCache() {
auto& executor_ = getExecutorCacheMap()[graphName()];
TORCH_INTERNAL_ASSERT(executor_);
return executor_.get();
}
void SetUp(const ::benchmark::State& state) {
auto& executor_ = getExecutorCacheMap()[graphName()];
// Makes sure same graph hasn't been compiled before
if (!executor_) {
auto fusion_ptr = std::make_unique<Fusion>();
FusionGuard(fusion_ptr.get());
setupFusion()(fusion_ptr.get());
getExecutorCacheMap()[graphName()] =
std::make_unique<FusionExecutorCache>(std::move(fusion_ptr));
}
}
void TearDown(const ::benchmark::State& state) {}
protected:
static executorCache::ExecutorMap& getExecutorCacheMap() {
return executorCache::getGlobalMap();
}
};
#define NVFUSER_TO_STRING_HELPER(n) std::string(#n)
#define NVFUSER_TO_STRING(n) NVFUSER_TO_STRING_HELPER(n)
//! NVFUSER_BENCHMARK_RUN utility usage:
//! This utility helps create and manage FusionExecutorCaches and tries to use
//! the caching
//! mechanism in NVFuser to avoid re-compilation.
//!
//! There are two macros in this utility: NVFUSER_BENCHMARK_DEFINE, and
//! NVFUSER_BENCHMARK_RUN,
//! and user needs to supply two functions SETUP_FUSION and RUN_FUSION, with
//! following signatures:
//!
//! SETUP_FUSION(Fusion* , args...);
//! RUN_FUSION(benchmark::State&, FusionExecutorCache* , args...);
//!
//! where args... are additional arguments, and they need to be the same for
//! SETUP_FUSION and RUN_FUSION.
//!
//! SETUP_FUSION is called once in each definition of benchmark to build the
//! fusionIR graph
//!
//! RUN_FUSION is just like the normal benchmark instance, except that a
//! FusionExecutorCache
//! will be provided for scheduling, running and timing the fusion runs. It is
//! called once in each benchmark instance. For example:
//! NVFUSER_BENCHMARK_RUN(my_benchmark)
//! ->RangeMultiplier(2)
//! ->Ranges({{1, 4})
//! Calls RUN_FUSION 3 times.
//!
//! To register a benchmark, the API is:
//!
//! NVFUSER_BENCHMARK_DEFINE(my_benchmark,SETUP_FUSION,RUN_FUSION,args...);
//!
//! where my_benchmark is any unique name given for this benchmark,
//! SETUP_FUSION, RUN_FUSION as described above,
//! args... is the arg list supplied to both setup_fusion and run_fusion
//!
//! each NVFUSER_BENCHMARK_DEFINE registers a benchmark with a single
//! FusionExecutorCache, i.e. a single fusion graph, and multiple benchmark
//! data points can be registered like:
//!
//! NVFUSER_BENCHMARK_RUN(my_benchmark)
//! ->Ranges({{1,2}});
//!
//! NVFUSER_BENCHMARK_RUN(my_benchmark)
//! ->Ranges({{3,4}});
//!
//! All datapoints will use the same FusionExecutorCache so recompilation is
//! avoided as much as possible.
#define NVFUSER_BENCHMARK_DEFINE( \
BENCHMARK_NAME, SETUP_FUSION, RUN_FUSION, ...) \
class BENCHMARK_NAME##___GRAPH : public BenchmarkGraph { \
public: \
std::string graphName() { \
return NVFUSER_TO_STRING(BENCHMARK_NAME##___GRAPH); \
} \
SetupFusionFunction setupFusion() { \
return [](Fusion* fusion) { SETUP_FUSION(fusion, __VA_ARGS__); }; \
} \
}; \
BENCHMARK_DEFINE_F(BENCHMARK_NAME##___GRAPH, BENCHMARK_NAME) \
(benchmark::State & benchmark_state) { \
RUN_FUSION( \
benchmark_state, \
BENCHMARK_NAME##___GRAPH::getExecutorCache(), \
__VA_ARGS__); \
}
#define NVFUSER_BENCHMARK_RUN(BENCHMARK_NAME) \
BENCHMARK_REGISTER_F(BENCHMARK_NAME##___GRAPH, BENCHMARK_NAME)