blob: 8195778eeed6059da6ea9b527f3aaaad2aacf523 [file] [log] [blame]
#include <Python.h>
#include "batch_normalization.h"
#include "convolution.h"
#include "accumulate_grad.h"
#include "basic_ops.h"
#include "tensor.h"
#include "torch/csrc/THP.h"
#include "torch/csrc/autograd/python_cpp_function.h"
#include "torch/csrc/utils/tuple_parser.h"
#include "torch/csrc/DynamicTypes.h"
using namespace torch::autograd;
using torch::TupleParser;
struct BatchNormCtor {
BatchNormForward* operator()(PyObject* args) {
BatchNormParams params;
TupleParser parser(args, 6);
parser.parse(params.running_mean);
parser.parse(params.running_var);
parser.parse(params.training);
parser.parse(params.momentum);
parser.parse(params.eps);
parser.parse(params.cudnn_enabled);
return new BatchNormForward(std::move(params));
}
};
struct ConvCtor {
ConvForward* operator()(PyObject* args) {
ConvParams params;
TupleParser parser(args, 8);
parser.parse(params.stride);
parser.parse(params.padding);
parser.parse(params.dilation);
parser.parse(params.transposed);
parser.parse(params.output_padding);
parser.parse(params.groups);
parser.parse(params.benchmark);
parser.parse(params.cudnn_enabled);
return new ConvForward(std::move(params));
}
};
struct DelayedErrorCtor {
DelayedError* operator()(PyObject* args) {
std::string msg;
TupleParser parser(args, 1);
parser.parse(msg);
return new DelayedError(msg);
}
};
struct NoCtor {
Function* operator()(PyObject* args) {
throw std::runtime_error("Cannot construct");
}
};
template<typename C, typename T>
static void addClass(PyObject* module, PyTypeObject& type, const char* name,
PyGetSetDef* function_properties=NULL, PyMethodDef* function_methods=NULL)
{
createForwardFunctionPyTypeObject<T>(type, name, function_properties, function_methods);
Py_INCREF(&type);
PyModule_AddObject(module, name, (PyObject*)&type);
registerCppFunction(typeid(C), &type);
}
template<typename T, typename ValueT, typename ParamsT, ValueT ParamsT::*ptr,
typename ConvertArgT, PyObject* (*Convert)(ConvertArgT)>
PyObject* getTupleAttr(PyObject* obj, void* _unused)
{
HANDLE_TH_ERRORS
THPCppFunction* self = (THPCppFunction*)obj;
auto& arr = ((T*)(self->cdata.get()))->*ptr;
auto num_elems = arr.size();
THPObjectPtr py_tuple = PyTuple_New(num_elems);
if (!py_tuple) return NULL;
for (size_t i = 0; i < num_elems; ++i) {
PyTuple_SET_ITEM(py_tuple.get(), i, Convert(arr[i]));
}
return py_tuple.release();
END_HANDLE_TH_ERRORS
}
template<typename T, typename ValueT, typename ParamsT, ValueT ParamsT::*ptr,
typename ConvertArgT, PyObject* (*Convert)(ConvertArgT)>
PyObject* getValueAttr(PyObject* obj, void* _unused)
{
HANDLE_TH_ERRORS
THPCppFunction* self = (THPCppFunction*)obj;
auto& val = ((T*)(self->cdata.get()))->*ptr;
return Convert(val);
END_HANDLE_TH_ERRORS
}
template<typename T, typename ParamsT, std::shared_ptr<thpp::Tensor> ParamsT::*ptr>
PyObject* getTensorAttr(PyObject* obj, void* _unused)
{
HANDLE_TH_ERRORS
THPCppFunction* self = (THPCppFunction*)obj;
auto& val = ((T*)(self->cdata.get()))->*ptr;
THPObjectPtr py_tensor;
if (!val) {
Py_INCREF(Py_None);
py_tensor = Py_None;
} else {
py_tensor = torch::createPyObject(*val);
}
return py_tensor.release();
END_HANDLE_TH_ERRORS
}
static struct PyGetSetDef batch_norm_forward_properties[] = {
THP_FUNCTION_DEFAULT_PROPERTIES,
{(char*)"running_mean", (getter)getTensorAttr<BatchNormForward, BatchNormParams,
&BatchNormParams::running_mean>, NULL, NULL, NULL},
{(char*)"running_var", (getter)getTensorAttr<BatchNormForward, BatchNormParams,
&BatchNormParams::running_var>, NULL, NULL, NULL},
{(char*)"training", (getter)getValueAttr<BatchNormForward, bool, BatchNormParams,
&BatchNormParams::training, long, PyBool_FromLong>, NULL, NULL, NULL},
{(char*)"momentum", (getter)getValueAttr<BatchNormForward, double, BatchNormParams,
&BatchNormParams::momentum, double, PyFloat_FromDouble>, NULL, NULL, NULL},
{(char*)"eps", (getter)getValueAttr<BatchNormForward, double, BatchNormParams,
&BatchNormParams::eps, double, PyFloat_FromDouble>, NULL, NULL, NULL},
{(char*)"cudnn_enabled", (getter)getValueAttr<BatchNormForward, bool, BatchNormParams,
&BatchNormParams::cudnn_enabled, long, PyBool_FromLong>, NULL, NULL, NULL},
{NULL}
};
static struct PyGetSetDef batch_norm_backward_properties[] = {
THP_FUNCTION_DEFAULT_PROPERTIES,
{(char*)"running_mean", (getter)getTensorAttr<BatchNormBackward, BatchNormParams,
&BatchNormParams::running_mean>, NULL, NULL, NULL},
{(char*)"running_var", (getter)getTensorAttr<BatchNormBackward, BatchNormParams,
&BatchNormParams::running_var>, NULL, NULL, NULL},
{(char*)"training", (getter)getValueAttr<BatchNormBackward, bool, BatchNormParams,
&BatchNormParams::training, long, PyBool_FromLong>, NULL, NULL, NULL},
{(char*)"momentum", (getter)getValueAttr<BatchNormBackward, double, BatchNormParams,
&BatchNormParams::momentum, double, PyFloat_FromDouble>, NULL, NULL, NULL},
{(char*)"eps", (getter)getValueAttr<BatchNormBackward, double, BatchNormParams,
&BatchNormParams::eps, double, PyFloat_FromDouble>, NULL, NULL, NULL},
{(char*)"cudnn_enabled", (getter)getValueAttr<BatchNormBackward, bool, BatchNormParams,
&BatchNormParams::cudnn_enabled, long, PyBool_FromLong>, NULL, NULL, NULL},
{NULL}
};
static struct PyGetSetDef conv_forward_properties[] = {
THP_FUNCTION_DEFAULT_PROPERTIES,
{(char*)"stride", (getter)getTupleAttr<ConvForward, std::vector<int>, ConvParams,
&ConvParams::stride, long, PyInt_FromLong>, NULL, NULL, NULL},
{(char*)"padding", (getter)getTupleAttr<ConvForward, std::vector<int>, ConvParams,
&ConvParams::padding, long, PyInt_FromLong>, NULL, NULL, NULL},
{(char*)"dilation", (getter)getTupleAttr<ConvForward, std::vector<int>, ConvParams,
&ConvParams::dilation, long, PyInt_FromLong>, NULL, NULL, NULL},
{(char*)"transposed", (getter)getValueAttr<ConvForward, bool, ConvParams,
&ConvParams::transposed, long, PyBool_FromLong>, NULL, NULL, NULL},
{(char*)"output_padding", (getter)getTupleAttr<ConvForward, std::vector<int>, ConvParams,
&ConvParams::output_padding, long, PyInt_FromLong>, NULL, NULL, NULL},
{(char*)"groups", (getter)getValueAttr<ConvForward, int, ConvParams,
&ConvParams::groups, long, PyInt_FromLong>, NULL, NULL, NULL},
{NULL}
};
static struct PyGetSetDef conv_backward_properties[] = {
THP_FUNCTION_DEFAULT_PROPERTIES,
{(char*)"stride", (getter)getTupleAttr<ConvBackward, std::vector<int>, ConvParams,
&ConvParams::stride, long, PyInt_FromLong>, NULL, NULL, NULL},
{(char*)"padding", (getter)getTupleAttr<ConvBackward, std::vector<int>, ConvParams,
&ConvParams::padding, long, PyInt_FromLong>, NULL, NULL, NULL},
{(char*)"dilation", (getter)getTupleAttr<ConvBackward, std::vector<int>, ConvParams,
&ConvParams::dilation, long, PyInt_FromLong>, NULL, NULL, NULL},
{(char*)"transposed", (getter)getValueAttr<ConvBackward, bool, ConvParams,
&ConvParams::transposed, long, PyBool_FromLong>, NULL, NULL, NULL},
{(char*)"output_padding", (getter)getTupleAttr<ConvBackward, std::vector<int>, ConvParams,
&ConvParams::output_padding, long, PyInt_FromLong>, NULL, NULL, NULL},
{(char*)"groups", (getter)getValueAttr<ConvBackward, int, ConvParams,
&ConvParams::groups, long, PyInt_FromLong>, NULL, NULL, NULL},
{NULL}
};
static PyObject* accumulateGradVar(PyObject *_self, void* _unused)
{
THPCppFunction* self = (THPCppFunction*)_self;
auto grad_acc = (AccumulateGrad*)self->cdata.get();
auto var = grad_acc->variable.lock();
if (!var) Py_RETURN_NONE;
return THPVariable_Wrap(var);
}
static struct PyGetSetDef accumulate_grad_properties[] = {
THP_FUNCTION_DEFAULT_PROPERTIES,
{(char*)"variable", accumulateGradVar, NULL, NULL, NULL},
{NULL}
};
bool THPAutograd_initFunctions(PyObject* _unused)
{
THPObjectPtr module = PyModule_New("torch._C._functions");
if (!module) return false;
static PyTypeObject BatchNormClass, BatchNormBackwardClass;
addClass<BatchNormForward, BatchNormCtor>(module, BatchNormClass, "BatchNorm", batch_norm_forward_properties);
addClass<BatchNormBackward, NoCtor>(module, BatchNormBackwardClass, "BatchNormBackward", batch_norm_backward_properties);
static PyTypeObject ConvClass, ConvBackwardClass;
addClass<ConvForward, ConvCtor>(module, ConvClass, "ConvNd", conv_forward_properties);
addClass<ConvBackward, NoCtor>(module, ConvBackwardClass, "ConvNdBackward", conv_backward_properties);
static PyTypeObject AccumulateGradClass;
addClass<AccumulateGrad, NoCtor>(module, AccumulateGradClass, "AccumulateGrad", accumulate_grad_properties);
static PyTypeObject AddClass, AddBackwardClass;
addClass<Add, NoCtor>(module, AddClass, "Add");
addClass<AddBackward, NoCtor>(module, AddBackwardClass, "AddBackward");
static PyTypeObject ErrorClass;
addClass<Error, NoCtor>(module, ErrorClass, "Error");
static PyTypeObject DelayedErrorClass;
addClass<DelayedError, DelayedErrorCtor>(module, DelayedErrorClass, "DelayedError");
static PyTypeObject CloneClass;
addClass<Clone, NoCtor>(module, CloneClass, "Clone");
static PyTypeObject IdentityClass;
addClass<Identity, NoCtor>(module, IdentityClass, "Identity");
THPObjectPtr parent = PyImport_ImportModule("torch._C");
if (!parent) return false;
PyModule_AddObject(parent.get(), "_functions", module.release());
return true;
}