| # Owner(s): ["module: functorch"] |
| import functools |
| import unittest |
| |
| from torch.testing._internal.common_utils import TEST_WITH_TORCHDYNAMO, parametrize, instantiate_parametrized_tests |
| import torch |
| import torch.utils._pytree as pytree |
| from functorch.experimental import control_flow |
| from functorch.experimental.control_flow import UnsupportedAliasMutationException, cond |
| from torch.fx.experimental.proxy_tensor import make_fx |
| from torch.testing._internal.common_utils import run_tests, TestCase |
| from torch.testing._internal.common_quantization import skipIfNoDynamoSupport |
| from torch._subclasses.functional_tensor import FunctionalTensor |
| |
| # TODO: pull these helpers from AOTAutograd later |
| def to_fun(t): |
| if isinstance(t, torch.Tensor): |
| return FunctionalTensor.to_functional(t) |
| return t |
| |
| def from_fun(t): |
| if not isinstance(t, FunctionalTensor): |
| # quick sanity assert |
| if isinstance(t, torch.Tensor): |
| assert not torch._is_functional_tensor(t) |
| return t |
| torch._sync(t) |
| return torch._from_functional_tensor(t.elem) |
| |
| def to_fun_old(t): |
| if isinstance(t, torch.Tensor) and not torch._is_functional_tensor(t): |
| out = torch._to_functional_tensor(t) |
| torch._mirror_autograd_meta_to(t, out) |
| return out |
| return t |
| |
| def from_fun_old(t): |
| # quick sanity assert |
| if isinstance(t, torch.Tensor): |
| assert torch._is_functional_tensor(t) |
| torch._sync(t) |
| return torch._from_functional_tensor(t) |
| return t |
| |
| def _fake_map(f, x, *args): |
| from functorch.experimental.control_flow import _stack_pytree, _unstack_pytree |
| x_pytrees = _unstack_pytree(x) |
| zs = [] |
| for xp in x_pytrees: |
| zs.append(f(xp, *args)) |
| return _stack_pytree(zs) |
| |
| def collect_meta_for_filtered_nodes(gm: torch.fx.GraphModule, node_names, meta_field_name): |
| ret = [] |
| for mod in gm.modules(): |
| for node in mod.graph.nodes: |
| if node.name in node_names: |
| for field_name in meta_field_name: |
| ret.append(node.meta.get(field_name)) |
| return ret |
| |
| def reduce_func(*operands): |
| acc = 0 |
| for operand in operands: |
| acc += operand |
| return acc |
| |
| class ReduceObj: |
| def __call__(self, *operands): |
| return reduce_func(*operands) |
| |
| class ReduceMod(torch.nn.Module): |
| def _reduce(self, *operands): |
| return reduce_func(*operands) |
| |
| def forward(self, *operands): |
| return self._reduce(*operands) |
| |
| |
| |
| @skipIfNoDynamoSupport |
| class TestControlFlow(TestCase): |
| def setUp(self): |
| torch._dynamo.reset() |
| super().setUp() |
| |
| def test_cond_no_trace(self): |
| def true_fn(x): |
| return x.sin() |
| |
| def false_fn(x): |
| return x.cos() |
| |
| x = torch.randn(4) |
| result = cond(False, true_fn, false_fn, [x]) |
| self.assertEqual(result, torch.cos(x)) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.") |
| def test_cond_gpu(self): |
| def true_fn(x): |
| return x.sin() |
| |
| def false_fn(x): |
| return x.cos() |
| |
| x = torch.randn(4, device="cuda") |
| pred = torch.tensor(False, device="cuda") |
| result = cond(pred, true_fn, false_fn, [x]) |
| self.assertEqual(result, torch.cos(x)) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA.") |
| def test_map_gpu(self): |
| def f(x, y): |
| return x + y |
| |
| xs = torch.ones(3, 2, 2, device="cuda") |
| y = torch.ones(2, device="cuda") |
| res = control_flow.map(f, xs, y) |
| expected = _fake_map(f, xs, y) |
| self.assertEqual(expected, res) |
| |
| def test_map_illegal_inputs(self): |
| def f(x, y): |
| return x[0] + x[1] + y |
| |
| with self.assertRaisesRegex(RuntimeError, |
| r"Mapped xs can only consist of tensors\. Got xs \[3, tensor\(\[1\., 1\.\]\)\]\."): |
| _ = control_flow.map(f, (3, torch.ones(2)), torch.ones(2)) |
| |
| with self.assertRaisesRegex(RuntimeError, |
| r"Leading dimensions of mapped xs cannot be 0\."): |
| _ = control_flow.map(f, (torch.ones(0, 1, 2), torch.ones(0, 1, 2)), torch.ones(2)) |
| |
| with self.assertRaisesRegex(RuntimeError, |
| r"Leading dimensions of mapped xs must be consistent\. " |
| r"Got shapes \[torch\.Size\(\[3, 4, 5\]\), torch\.Size\(\[4, 4, 5\]\)\]\."): |
| _ = control_flow.map(f, (torch.ones(3, 4, 5), torch.ones(4, 4, 5)), torch.ones(5)) |
| |
| def test_map_illegal_outputs(self): |
| def f(x, y): |
| return x.item() |
| |
| def f1(x, y): |
| return y.size() |
| |
| def f2(x, y): |
| return None |
| |
| x = torch.ones([3]) |
| y = torch.ones([1, 2, 3]) |
| with self.assertRaisesRegex(RuntimeError, r"Expect outputs of map only contains tensors or None\."): |
| _ = control_flow.map(f, x, y) |
| |
| with self.assertRaisesRegex(RuntimeError, r"Expect outputs of map only contains tensors or None\."): |
| out = control_flow.map(f1, x, y) |
| |
| # return None is OK |
| _ = control_flow.map(f2, x, y) |
| |
| |
| def test_map_list_in_out(self): |
| def f(x, y): |
| return [[x[0][0] + y]] |
| |
| xs = [[torch.ones(3, 2, 2)]] |
| y = torch.ones(2) |
| res = control_flow.map(f, xs, y) |
| expected = _fake_map(f, xs, y) |
| self.assertEqual(len(res), 1) |
| self.assertEqual(len(res[0]), 1) |
| self.assertEqual(expected, res) |
| |
| def test_map_dict_in_out(self): |
| def f(x, y): |
| return {"c": x["a"]["b"] + y} |
| |
| xs = {"a": {"b": torch.ones(3, 2, 2)}} |
| y = torch.ones(2) |
| res = control_flow.map(f, xs, y) |
| expected = _fake_map(f, xs, y) |
| self.assertEqual(len(res), 1) |
| self.assertTrue("c" in res) |
| self.assertEqual(expected, res) |
| |
| def test_map_autograd_simple(self): |
| def f(x, y): |
| return x.sin().cos() * y.cos().sin() |
| |
| xs = torch.ones(3, 2, 2, requires_grad=True) |
| y = torch.ones(2, requires_grad=True) |
| res = control_flow.map(f, xs, y) |
| expected_res = _fake_map(f, xs, y) |
| grad_out = torch.ones_like(res) |
| grads = torch.autograd.grad(res, (xs, y), grad_out) |
| expected_grads = torch.autograd.grad(expected_res, (xs, y), grad_out) |
| self.assertEqual(expected_res, res) |
| self.assertEqual(expected_grads, grads) |
| |
| def test_map_autograd_simple_partial_grad(self): |
| def f(x, y): |
| return x.sin().cos() * y.cos().sin() |
| |
| xs = torch.ones(3, 2, 2, requires_grad=True) |
| # Disable the gradient computation for y |
| y = torch.ones(2, requires_grad=False) |
| res = control_flow.map(f, xs, y) |
| expected_res = _fake_map(f, xs, y) |
| grad_out = torch.ones_like(res) |
| grads = torch.autograd.grad(res, (xs,), grad_out) |
| expected_grads = torch.autograd.grad(expected_res, (xs,), grad_out) |
| self.assertEqual(expected_res, res) |
| self.assertEqual(expected_grads, grads) |
| |
| def test_map_autograd_no_grad_output(self): |
| def f(x, y): |
| return x[0].sin().cos() + y, y.cos().sin() |
| |
| xs = [torch.ones(3, 2, 2, requires_grad=True), torch.ones(3, 3)] |
| # Disable the gradient computation for y |
| y = torch.ones(2, requires_grad=False) |
| res = control_flow.map(f, xs, y) |
| expected_res = _fake_map(f, xs, y) |
| grad_out = torch.ones_like(res[0]) |
| grads = torch.autograd.grad(res[0], (xs[0],), grad_out) |
| expected_grads = torch.autograd.grad(expected_res[0], (xs[0],), grad_out) |
| self.assertEqual(expected_res, res) |
| self.assertEqual(expected_grads, grads) |
| |
| |
| def test_map_autograd_nested_list(self): |
| import torch.utils._pytree as pytree |
| |
| def f(x, y): |
| a, b = x |
| c, d = a |
| return [[b.sin() * c.cos()], d.sin() * y.cos()] |
| |
| def fwbw(map_op, f, x, y): |
| z = map_op(f, x, y) |
| flat_x = pytree.tree_leaves(x) |
| flat_z = pytree.tree_leaves(z) |
| grads = torch.autograd.grad(flat_z, flat_x, [torch.ones_like(z) for z in flat_z]) |
| return z, grads |
| |
| x = [[torch.randn(3, 2, 2, requires_grad=True), torch.randn(3, 2, 1, requires_grad=True)], |
| torch.ones(3, 1, 2, requires_grad=True)] |
| y = torch.ones(1, requires_grad=True) |
| true_outs = fwbw(control_flow.map, f, x, y) |
| fake_outs = fwbw(_fake_map, f, x, y) |
| self.assertEqual(true_outs, fake_outs) |
| |
| |
| @skipIfNoDynamoSupport |
| class TestControlFlowTraced(TestCase): |
| def setUp(self): |
| torch._dynamo.reset() |
| super().setUp() |
| |
| def test_cond_traced_not_nested(self): |
| def true_fn(x): |
| return x.sin() |
| |
| def false_fn(x): |
| return x.cos() |
| |
| def f(x, y): |
| return cond(y, true_fn, false_fn, [x]) |
| |
| x = torch.randn(4) |
| graph = make_fx(f)(x, torch.tensor(False)) |
| result_true = graph.forward(x, torch.tensor(True)) |
| result_false = graph.forward(x, torch.tensor(False)) |
| self.assertFalse(torch.allclose(result_true, result_false)) |
| self.assertEqual(result_true, torch.sin(x)) |
| self.assertEqual(result_false, torch.cos(x)) |
| |
| graph = make_fx(f, tracing_mode="symbolic")(x, torch.tensor(False)) |
| self.assertEqual(graph(x, torch.tensor(True)), f(x, torch.tensor(True))) |
| |
| def test_cond_nested_traced(self): |
| def true_nested(y): |
| return y * y |
| |
| def false_nested(y): |
| return y + y |
| |
| def true_fn(x, pred2): |
| z = cond(pred2, true_nested, false_nested, [x]) |
| return x + z |
| |
| def false_fn(x, _): |
| return x.cos() |
| |
| def f(x, pred, pred2): |
| return cond(pred, true_fn, false_fn, [x, pred2]) |
| |
| x = torch.randn(4) |
| graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False)) |
| |
| result_true_true = graph.forward(x, torch.tensor(True), torch.tensor(True)) # True + True -> x * x |
| result_true_false = graph.forward(x, torch.tensor(True), torch.tensor(False)) # True + True -> x + x |
| result_false_true = graph.forward(x, torch.tensor(False), torch.tensor(True)) # False + either -> cos |
| result_false_false = graph.forward(x, torch.tensor(False), torch.tensor(False)) # False + either -> cos |
| |
| self.assertNotEqual(result_true_true, result_true_false) |
| self.assertFalse(torch.allclose(result_false_true, result_true_true)) |
| |
| self.assertEqual(result_false_true, result_false_false) |
| |
| self.assertEqual(result_true_true, (x * x) + x) |
| self.assertEqual(result_true_false, x + x + x) |
| |
| self.assertEqual(result_false_true, torch.cos(x)) |
| |
| graph = make_fx(f, tracing_mode="symbolic")(x, torch.tensor(False), torch.tensor(False)) |
| self.assertEqual(graph(x, torch.tensor(True), torch.tensor(True)), f(x, torch.tensor(True), torch.tensor(True))) |
| |
| def test_cond_functionalized_hah(self): |
| def true_fn(x): |
| y = x.sin() |
| y.add_(4) |
| return x.sin().max() + y.sum() |
| |
| def false_fn(x): |
| return x.cos().min() |
| |
| def f(x): |
| pred = x.shape[0] == 1 |
| return cond(pred, true_fn, false_fn, [x]) |
| |
| example_inputs = (torch.ones(4, 5),) |
| functional_f = torch.func.functionalize(f) |
| self.assertEqual(functional_f(*example_inputs), f(*example_inputs)) |
| |
| graph_module = make_fx(torch.func.functionalize(f))(*example_inputs) |
| self.assertEqual(graph_module(*example_inputs), f(*example_inputs)) |
| |
| all_ops_in_true_branch = [] |
| for node in graph_module.true_graph_0.graph.nodes: |
| if node.op == "call_function": |
| all_ops_in_true_branch.append(node.target) |
| |
| self.assertFalse(any(op._schema.is_mutable for op in all_ops_in_true_branch)) |
| |
| graph_module = make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(*example_inputs) |
| self.assertEqual(graph_module(*example_inputs), f(*example_inputs)) |
| |
| def test_cond_retrace_functionalized(self): |
| def true_fn(x): |
| return x.sin() |
| |
| def false_fn(x): |
| return x.cos() |
| |
| def f(x): |
| return cond(x.all(), true_fn, false_fn, (x,)) |
| |
| inp = torch.ones(1, 2) |
| gm_non_functional = make_fx(f, tracing_mode="real")(inp) |
| gm_functional = make_fx(torch.func.functionalize(gm_non_functional), tracing_mode="real")(inp) |
| self.assertEqual(gm_functional(torch.zeros(1, 2)), f(torch.zeros(1, 2))) |
| |
| def test_cond_functionalized_nested(self): |
| def true_true_fn(x): |
| y = x.cos() |
| y.add_(4) |
| return x.sin().max() + y.sin().max() |
| |
| def true_false_fn(x): |
| return x.cos().min() |
| |
| def true_fn(x): |
| pred = x.shape[0] == 1 |
| return cond(pred, true_true_fn, true_false_fn, [x]) |
| |
| def false_fn(x): |
| return x.sum() |
| |
| def f(x): |
| pred = x.shape[0] == 1 |
| return cond(pred, true_fn, false_fn, [x]) |
| |
| example_inputs = (torch.ones(4, 5),) |
| functional_f = torch.func.functionalize(f) |
| self.assertEqual(functional_f(*example_inputs), f(*example_inputs)) |
| |
| graph_module = make_fx(torch.func.functionalize(f))(*example_inputs) |
| self.assertEqual(graph_module(*example_inputs), f(*example_inputs)) |
| |
| gm_true_true_branch = graph_module.true_graph_0.true_graph_0 |
| |
| graph_module1 = make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(*example_inputs) |
| self.assertEqual(graph_module1(*example_inputs), f(*example_inputs)) |
| |
| all_ops = [] |
| for node in gm_true_true_branch.graph.nodes: |
| if node.op == "call_function": |
| all_ops.append(node.target) |
| |
| self.assertFalse(any(op._schema.is_mutable for op in all_ops)) |
| |
| def test_cond_functionalized_data_dependent_pred(self): |
| def true_fn(x): |
| return x.sin().sum() |
| |
| def false_fn(x): |
| return x.cos().sum() |
| |
| def f(x): |
| pred = x.nonzero().shape[0] == 1 |
| return cond(pred, true_fn, false_fn, [x]) |
| |
| example_inputs = (torch.ones(4, 5),) |
| functional_f = torch.func.functionalize(f) |
| self.assertEqual(functional_f(*example_inputs), f(*example_inputs)) |
| |
| graph_module = make_fx(torch.func.functionalize(f))(*example_inputs) |
| self.assertEqual(graph_module(*example_inputs), f(*example_inputs)) |
| |
| def test_cond_functionalized_input_mutation_on_true_branch(self): |
| def true_fn(x): |
| view_x = x.view(x.shape) |
| view_x.add_(1) |
| return view_x.sin().sum() |
| |
| def false_fn(x): |
| return x.cos().sum() |
| |
| def f(x): |
| pred = x.shape[0] == 4 |
| return cond(pred, true_fn, false_fn, [x]) |
| |
| example_inputs = (torch.ones(4, 5),) |
| functional_f = torch.func.functionalize(f) |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "One of torch.cond branch"): |
| functional_f(*example_inputs) |
| |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "One of torch.cond branch"): |
| make_fx(torch.func.functionalize(f))(*example_inputs) |
| |
| def test_cond_functionalized_input_mutation_on_false_branch(self): |
| def true_fn(x): |
| return x.sin().sum() |
| |
| def false_fn(x): |
| view_x = x.view(x.shape) |
| view_x.add_(1) |
| return view_x.cos().sum() |
| |
| def f(x): |
| pred = x.shape[0] == 4 |
| return cond(pred, true_fn, false_fn, [x]) |
| |
| example_inputs = (torch.ones(5, 5),) |
| functional_f = torch.func.functionalize(f) |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "One of torch.cond branch"): |
| functional_f(*example_inputs) |
| |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "One of torch.cond branch"): |
| make_fx(torch.func.functionalize(f))(*example_inputs) |
| |
| def test_cond_functionalized_output_alias_input(self): |
| def true_fn(x): |
| return x |
| |
| def false_fn(x): |
| view_x = x.view(x.shape) |
| return view_x |
| |
| def f(x): |
| pred = x.shape[0] == 4 |
| return cond(pred, true_fn, false_fn, [x]) |
| |
| example_inputs = (torch.ones(5, 5),) |
| functional_f = torch.func.functionalize(f) |
| |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "One of torch.cond branch might be aliasing"): |
| functional_f(*example_inputs) |
| |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "One of torch.cond branch might be aliasing"): |
| make_fx(torch.func.functionalize(f))(*example_inputs) |
| |
| def test_cond_functionalized_nested_input_mutation(self): |
| def true_true_fn(x): |
| x.add_(4) |
| return x.sin().max() |
| |
| def true_false_fn(x): |
| return x.cos().min() |
| |
| def true_fn(x): |
| pred = x.shape[0] == 1 |
| return cond(pred, true_true_fn, true_false_fn, [x]) |
| |
| def false_fn(x): |
| return x.sum() |
| |
| def f(x): |
| pred = x.shape[0] == 1 |
| return cond(pred, true_fn, false_fn, [x]) |
| |
| example_inputs = (torch.ones(4, 5),) |
| functional_f = torch.func.functionalize(f) |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "One of torch.cond branch"): |
| functional_f(*example_inputs) |
| |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "One of torch.cond branch"): |
| make_fx(torch.func.functionalize(f))(*example_inputs) |
| |
| def test_cond_functionalized_nested_input_mutation_with_aot_func(self): |
| def true_true_fn(x): |
| x.add_(4) |
| return x.sin().max() |
| |
| def true_false_fn(x): |
| return x.cos().min() |
| |
| def true_fn(x): |
| pred = x.shape[0] == 1 |
| return cond(pred, true_true_fn, true_false_fn, [x]) |
| |
| def false_fn(x): |
| return x.sum() |
| |
| def f(x): |
| pred = x.shape[0] == 1 |
| return cond(pred, true_fn, false_fn, [x]) |
| |
| example_input = torch.ones(4, 5) |
| try: |
| example_input_func = to_fun_old(example_input) |
| torch._enable_functionalization(reapply_views=False) |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "One of torch.cond branch"): |
| f(example_input_func) |
| |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "One of torch.cond branch"): |
| make_fx(f)(example_input_func) |
| finally: |
| torch._disable_functionalization() |
| |
| def f_wrapper(func): |
| @functools.wraps(func) |
| def wrapper(*args, **kwargs): |
| torch._enable_functionalization(reapply_views=False) |
| try: |
| return func(*args, **kwargs) |
| finally: |
| torch._disable_functionalization() |
| return wrapper |
| |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "One of torch.cond branch"): |
| make_fx(f_wrapper(f))(example_input_func) |
| |
| |
| def test_cond_functionalized_input_aliasing_with_aot_func(self): |
| def true_fn(x): |
| return x |
| |
| def false_fn(x): |
| view_x = x.view(x.shape) |
| return view_x |
| |
| def f(x): |
| pred = x.shape[0] == 4 |
| return cond(pred, true_fn, false_fn, [x]) |
| |
| example_input = torch.ones(5, 5) |
| try: |
| example_input_func = to_fun_old(example_input) |
| torch._enable_functionalization(reapply_views=False) |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "One of torch.cond branch might be aliasing"): |
| f(example_input_func) |
| finally: |
| torch._disable_functionalization() |
| |
| def f_wrapper(func): |
| @functools.wraps(func) |
| def wrapper(*args, **kwargs): |
| torch._enable_functionalization(reapply_views=False) |
| try: |
| func_args = pytree.tree_map( |
| lambda x: torch._to_functional_tensor(x) if isinstance(x, torch.Tensor) else x, args) |
| func_kwargs = pytree.tree_map( |
| lambda x: torch._to_functional_tensor(x) if isinstance(x, torch.Tensor) else x, kwargs) |
| return func(*func_args, **func_kwargs) |
| finally: |
| torch._disable_functionalization() |
| return wrapper |
| |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "One of torch.cond branch might be aliasing"): |
| make_fx(f_wrapper(f))(example_input) |
| |
| def test_cond_functionalized_aot_func_check_functional(self): |
| def true_fn(x): |
| return x.cos() |
| |
| def false_fn(x): |
| y = x.sin() |
| y.add_(5) |
| return y |
| |
| def f(x): |
| pred = x.shape[0] == 4 |
| return cond(pred, true_fn, false_fn, [x]) |
| |
| example_input = torch.ones(5, 5) |
| |
| def f_wrapper(func): |
| @functools.wraps(func) |
| def wrapper(*args, **kwargs): |
| torch._enable_functionalization(reapply_views=False) |
| try: |
| func_args = pytree.tree_map( |
| lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x, args) |
| func_kwargs = pytree.tree_map( |
| lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x, kwargs) |
| return pytree.tree_map(from_fun_old, func(*func_args, **func_kwargs)) |
| finally: |
| torch._disable_functionalization() |
| return wrapper |
| |
| result_gm = make_fx(f_wrapper(f))(example_input) |
| for node in result_gm.true_graph_0.graph.nodes: |
| if node.op == "call_function": |
| self.assertTrue(not node.target._schema.is_mutable) |
| |
| for node in result_gm.false_graph_0.graph.nodes: |
| if node.op == "call_function": |
| self.assertTrue(not node.target._schema.is_mutable) |
| |
| self.assertEqual(result_gm(torch.ones(5, 5)), f(torch.ones(5, 5))) |
| |
| def test_cond_nested_traced_other_inputs(self): |
| def true_nested(y): |
| return y * y |
| |
| def false_nested(y): |
| return y + y |
| |
| def true_fn(k, pred2): |
| z = cond(pred2, true_nested, false_nested, [k]) |
| return torch.add(torch.tensor([.25, .25]), z) |
| |
| def false_fn(k, _): |
| return k.cos() |
| |
| def f(k, pred, pred2): |
| return cond(pred, true_fn, false_fn, [k, pred2]) |
| |
| x = torch.tensor([0.5, 0.5]) |
| graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False)) |
| |
| a = torch.tensor([1.0, 1.0]) |
| result_true_true = graph.forward(a, torch.tensor(True), torch.tensor(True)) |
| self.assertEqual(result_true_true, (a * a) + torch.tensor([0.25, 0.25])) |
| |
| b = torch.tensor([2.0, 2.0]) |
| result_true_true = graph.forward(b, torch.tensor(True), torch.tensor(True)) |
| self.assertEqual(result_true_true, (b * b) + torch.tensor([0.25, 0.25])) |
| |
| def test_cond_nested_traced_multi(self): |
| def true_a(y): |
| return y * y |
| |
| def false_a(y): |
| return y + y |
| |
| def true_b(y, z): |
| return y + z |
| |
| def false_b(y, z): |
| return y * z |
| |
| def f(x, pred, pred2): |
| a_out = cond(pred, true_a, false_a, [x]) |
| b_out = cond(pred2, true_b, false_b, [x, x]) |
| return a_out + b_out |
| |
| x = torch.randn(4) |
| graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False)) |
| |
| self.assertExpectedInline(graph.code.strip(), """\ |
| def forward(self, x_1, pred_1, pred2_1): |
| true_graph_0 = self.true_graph_0 |
| false_graph_0 = self.false_graph_0 |
| conditional = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, [x_1]); pred_1 = true_graph_0 = false_graph_0 = None |
| getitem = conditional[0]; conditional = None |
| true_graph_1 = self.true_graph_1 |
| false_graph_1 = self.false_graph_1 |
| conditional_1 = torch.ops.higher_order.cond(pred2_1, true_graph_1, false_graph_1, [x_1]); pred2_1 = true_graph_1 = false_graph_1 = x_1 = None |
| getitem_1 = conditional_1[0]; conditional_1 = None |
| add = torch.ops.aten.add.Tensor(getitem, getitem_1); getitem = getitem_1 = None |
| return add""") # noqa: B950 |
| self.assertExpectedInline(graph.true_graph_0.code.strip(), """\ |
| def forward(self, arg0_1): |
| mul = torch.ops.aten.mul.Tensor(arg0_1, arg0_1); arg0_1 = None |
| return (mul,)""") |
| |
| def test_raise_error_on_mismatch_type_size(self): |
| def true_fn(x): |
| return x.sin() |
| |
| def false_fn(x): |
| return (x, x) |
| |
| def f(x, y): |
| return cond(y, true_fn, false_fn, [x]) |
| |
| x = torch.randn(4) |
| with self.assertRaisesRegex( |
| torch._dynamo.exc.UncapturedHigherOrderOpError, |
| "Cond doesn't work unless it is captured completely with torch.compile" |
| ): |
| make_fx(f)(x, torch.tensor(False)) |
| |
| def test_raise_error_on_mismatch_tensor_size(self): |
| def true_fn(x): |
| return x.sin() |
| |
| def false_fn(x): |
| return torch.zeros([10, 10]) |
| |
| def f(x, y): |
| return cond(y, true_fn, false_fn, [x]) |
| |
| x = torch.randn(4) |
| with self.assertRaisesRegex( |
| torch._dynamo.exc.UncapturedHigherOrderOpError, |
| "Cond doesn't work unless it is captured completely with torch.compile" |
| ): |
| make_fx(f)(x, torch.tensor(False)) |
| |
| def test_cond_traced_not_nested_fake_tensor(self): |
| def true_fn(x): |
| return x.sin() |
| |
| def false_fn(x): |
| return x.cos() |
| |
| def f(x, y): |
| return cond(y, true_fn, false_fn, [x]) |
| |
| x = torch.randn(4) |
| graph = make_fx(f, tracing_mode="fake")(x, torch.tensor(False)) |
| result_true = graph.forward(x, torch.tensor(True)) |
| result_false = graph.forward(x, torch.tensor(False)) |
| self.assertFalse(torch.allclose(result_true, result_false)) |
| self.assertEqual(result_true, torch.sin(x)) |
| self.assertEqual(result_false, torch.cos(x)) |
| |
| def test_cond_nested_traced_fake_tensor(self): |
| def true_nested(y): |
| return y * y |
| |
| def false_nested(y): |
| return y + y |
| |
| def true_fn(x, pred2): |
| z = cond(pred2, true_nested, false_nested, [x]) |
| return x + z |
| |
| def false_fn(x, _): |
| return x.cos() |
| |
| def f(x, pred, pred2): |
| return cond(pred, true_fn, false_fn, [x, pred2]) |
| |
| x = torch.randn(4) |
| graph = make_fx(f, tracing_mode="fake")(x, torch.tensor(False), torch.tensor(False)) |
| |
| result_true_true = graph.forward(x, torch.tensor(True), torch.tensor(True)) # True + True -> x * x |
| result_true_false = graph.forward(x, torch.tensor(True), torch.tensor(False)) # True + True -> x + x |
| result_false_true = graph.forward(x, torch.tensor(False), torch.tensor(True)) # False + either -> cos |
| result_false_false = graph.forward(x, torch.tensor(False), torch.tensor(False)) # False + either -> cos |
| |
| self.assertNotEqual(result_true_true, result_true_false) |
| self.assertFalse(torch.allclose(result_false_true, result_true_true)) |
| |
| self.assertEqual(result_false_true, result_false_false) |
| |
| self.assertEqual(result_true_true, (x * x) + x) |
| self.assertEqual(result_true_false, x + x + x) |
| |
| self.assertEqual(result_false_true, torch.cos(x)) |
| |
| def test_cond_nested_traced_other_inputs_fake_tensor(self): |
| def true_nested(y): |
| return y * y |
| |
| def false_nested(y): |
| return y + y |
| |
| def true_fn(k, pred2): |
| z = cond(pred2, true_nested, false_nested, [k]) |
| return torch.add(torch.tensor([.25, .25]), z) |
| |
| def false_fn(k, _): |
| return k.cos() |
| |
| def f(k, pred, pred2): |
| return cond(pred, true_fn, false_fn, [k, pred2]) |
| |
| x = torch.tensor([0.5, 0.5]) |
| graph = make_fx(f, tracing_mode="fake")(x, torch.tensor(False), torch.tensor(False)) |
| |
| a = torch.tensor([1.0, 1.0]) |
| result_true_true = graph.forward(a, torch.tensor(True), torch.tensor(True)) |
| self.assertEqual(result_true_true, (a * a) + torch.tensor([0.25, 0.25])) |
| |
| b = torch.tensor([2.0, 2.0]) |
| result_true_true = graph.forward(b, torch.tensor(True), torch.tensor(True)) |
| self.assertEqual(result_true_true, (b * b) + torch.tensor([0.25, 0.25])) |
| |
| def test_cond_nested_traced_multi_fake_tensor(self): |
| def true_a(y): |
| return y * y |
| |
| def false_a(y): |
| return y + y |
| |
| def true_b(y, z): |
| return y + z |
| |
| def false_b(y, z): |
| return y * z |
| |
| def f(x, pred, pred2): |
| a_out = cond(pred, true_a, false_a, [x]) |
| b_out = cond(pred2, true_b, false_b, [x, x]) |
| return a_out + b_out |
| |
| x = torch.randn(4) |
| graph = make_fx(f, tracing_mode="fake")(x, torch.tensor(False), torch.tensor(False)) |
| |
| self.assertExpectedInline(graph.code.strip(), """\ |
| def forward(self, x_1, pred_1, pred2_1): |
| true_graph_0 = self.true_graph_0 |
| false_graph_0 = self.false_graph_0 |
| conditional = torch.ops.higher_order.cond(pred_1, true_graph_0, false_graph_0, [x_1]); pred_1 = true_graph_0 = false_graph_0 = None |
| getitem = conditional[0]; conditional = None |
| true_graph_1 = self.true_graph_1 |
| false_graph_1 = self.false_graph_1 |
| conditional_1 = torch.ops.higher_order.cond(pred2_1, true_graph_1, false_graph_1, [x_1]); pred2_1 = true_graph_1 = false_graph_1 = x_1 = None |
| getitem_1 = conditional_1[0]; conditional_1 = None |
| add = torch.ops.aten.add.Tensor(getitem, getitem_1); getitem = getitem_1 = None |
| return add""") # noqa: B950 |
| self.assertExpectedInline(graph.true_graph_0.code.strip(), """\ |
| def forward(self, arg0_1): |
| mul = torch.ops.aten.mul.Tensor(arg0_1, arg0_1); arg0_1 = None |
| return (mul,)""") |
| |
| def test_raise_error_on_mismatch_type_size_fake_tensor(self): |
| def true_fn(x): |
| return x.sin() |
| |
| def false_fn(x): |
| return (x, x) |
| |
| def f(x, y): |
| return cond(y, true_fn, false_fn, [x]) |
| |
| x = torch.randn(4) |
| with self.assertRaisesRegex( |
| torch._dynamo.exc.UncapturedHigherOrderOpError, |
| "Cond doesn't work unless it is captured completely with torch.compile" |
| ): |
| make_fx(f, tracing_mode="fake")(x, torch.tensor(False)) |
| |
| |
| def test_raise_error_on_mismatch_tensor_size_fake_tensor(self): |
| def true_fn(x): |
| return x.sin() |
| |
| def false_fn(x): |
| return torch.zeros([10, 10]) |
| |
| def f(x, y): |
| return cond(y, true_fn, false_fn, [x]) |
| |
| x = torch.randn(4) |
| with self.assertRaisesRegex( |
| torch._dynamo.exc.UncapturedHigherOrderOpError, |
| "Cond doesn't work unless it is captured completely with torch.compile" |
| ): |
| make_fx(f, tracing_mode="fake")(x, torch.tensor(False)) |
| |
| def check_map_count(self, gm, op_count): |
| i = 0 |
| for m in gm.modules(): |
| for node in m.graph.nodes: |
| if node.op == "call_function" and node.target == torch.ops.higher_order.map_impl: |
| i += 1 |
| self.assertEqual(i, op_count) |
| |
| def test_tracing_map_real(self): |
| def f(x, y): |
| return x + y |
| |
| def g(xs, y): |
| return control_flow.map(f, xs, y) |
| |
| gm = make_fx(g, tracing_mode="real")(torch.ones(3, 2, 2), torch.ones(2)) |
| x = torch.randn(3, 2, 2) |
| y = torch.randn(2) |
| res = gm(x, y) |
| self.assertEqual(res, g(x, y)) |
| self.check_map_count(gm, 1) |
| |
| def test_tracing_map_symbolic_simple(self): |
| def f(x, y): |
| return x + y |
| |
| def g(xs, y): |
| return control_flow.map(f, xs, y) |
| |
| gm = make_fx(g, tracing_mode="symbolic")(torch.ones(3, 2, 4), torch.ones(4)) |
| x = torch.randn(3, 2, 2) |
| y = torch.randn(2) |
| res = gm(x, y) |
| self.assertEqual(res, g(x, y)) |
| self.check_map_count(gm, 1) |
| |
| def test_tracing_map_symbolic_list(self): |
| def f(x, y): |
| return [x[0][0] + y, x[1] * y] |
| |
| def g(xs, y, z): |
| out = control_flow.map(f, xs, y) |
| return out[0] + z, out[1] * z |
| |
| example_x = [[torch.ones(3, 4, 5)], torch.ones(3, 4, 5)] |
| gm = make_fx(g, tracing_mode="symbolic")(example_x, torch.ones(5), torch.ones(5)) |
| x = [[torch.randn(4, 5, 6)], torch.ones(4, 5, 6)] |
| y = torch.randn(6) |
| z = torch.ones(6) |
| res = gm(x, y, z) |
| self.assertEqual(res, g(x, y, z)) |
| self.check_map_count(gm, 1) |
| |
| def test_tracing_map_symbolic_dict(self): |
| def f(x, y): |
| return {"d": x["b"]["a"] + y, "e": x["c"] * y} |
| |
| def g(xs, y, z): |
| out = control_flow.map(f, xs, y) |
| return {"f": out["d"] + z, "g": out["e"] * z} |
| |
| example_x = {"b": {"a": torch.ones(3, 4, 5)}, "c": torch.ones(3, 4, 5)} |
| gm = make_fx(g, tracing_mode="symbolic")(example_x, torch.ones(5), torch.ones(5)) |
| x = {"b": {"a": torch.randn(4, 5, 6)}, "c": torch.ones(4, 5, 6)} |
| y = torch.randn(6) |
| z = torch.ones(6) |
| res = gm(x, y, z) |
| self.assertEqual(res, g(x, y, z)) |
| self.check_map_count(gm, 1) |
| |
| def test_tracing_map_autograd_symbolic_simple(self): |
| def f(x, y): |
| return x + y |
| |
| def g(xs, y): |
| out = control_flow.map(f, xs, y) |
| return torch.autograd.grad(out, (xs, y), torch.ones_like(out)) |
| |
| gm = make_fx(g, tracing_mode="symbolic")(torch.ones(3, 4, 5, requires_grad=True), torch.ones(5, requires_grad=True)) |
| x = torch.randn(4, 5, 6, requires_grad=True) |
| y = torch.randn(6, requires_grad=True) |
| res = gm(x, y) |
| self.assertEqual(res, g(x, y)) |
| self.check_map_count(gm, 2) |
| |
| |
| def test_tracing_map_autograd_symbolic_list(self): |
| import torch.utils._pytree as pytree |
| |
| def f(x, y): |
| return [x[0].cos() + y.sin(), x[1].sin() * y.cos()] |
| |
| def g(xs, y): |
| out = control_flow.map(f, xs, y) |
| flat_out = pytree.tree_leaves(out) |
| flat_inp = pytree.tree_leaves((xs, y)) |
| requires_grad_inp = [inp for inp in flat_inp if inp.requires_grad] |
| return torch.autograd.grad(flat_out, requires_grad_inp, [torch.ones_like(out) for out in flat_out]) |
| |
| gm = make_fx(g, tracing_mode="symbolic")( |
| [torch.ones(3, 4, 5), torch.ones(3, 4, 5, requires_grad=True)], |
| torch.ones(5, requires_grad=True)) |
| x = [torch.randn(4, 5, 6), torch.ones(4, 5, 6, requires_grad=True)] |
| y = torch.randn(6, requires_grad=True) |
| res = gm(x, y) |
| self.assertEqual(res, g(x, y)) |
| self.check_map_count(gm, 2) |
| |
| def test_tracing_map_autograd_symbolic_dict(self): |
| def f(x, y): |
| return [x["a"] + y, x["b"] * y] |
| |
| def g(xs, y): |
| out = control_flow.map(f, xs, y) |
| flat_out = pytree.tree_leaves(out) |
| flat_inp = pytree.tree_leaves((xs, y)) |
| requires_grad_inp = [inp for inp in flat_inp if inp.requires_grad] |
| return torch.autograd.grad(flat_out, requires_grad_inp, [torch.ones_like(out) for out in flat_out]) |
| |
| traced_x = {"a": torch.ones(3, 4, 5, requires_grad=True), "b": torch.ones(3, 4, 5, requires_grad=True)} |
| gm = make_fx(g, tracing_mode="symbolic")(traced_x, torch.ones(5, requires_grad=True)) |
| x = {"a": torch.randn(4, 5, 6, requires_grad=True), "b": torch.ones(4, 5, 6, requires_grad=True)} |
| y = torch.randn(6, requires_grad=True) |
| res = gm(x, y) |
| self.assertEqual(res, g(x, y)) |
| self.check_map_count(gm, 2) |
| |
| def test_tracing_map_autograd_aot_functionalized(self): |
| def inner(x, y): |
| z = x - 1 |
| z.add_(1) |
| return z * y |
| |
| def f(xs, y): |
| res = control_flow.map(inner, xs, y) |
| grads = torch.autograd.grad(res, (xs, y), torch.ones_like(res)) |
| return grads |
| |
| def f_wrapper(func): |
| @functools.wraps(func) |
| def wrapper(*args, **kwargs): |
| torch._enable_functionalization(reapply_views=False) |
| try: |
| return pytree.tree_map(from_fun_old, func(*args, **kwargs)) |
| finally: |
| torch._disable_functionalization() |
| return wrapper |
| |
| example_inputs = (torch.ones(3, 2, 4, requires_grad=True), torch.ones(2, 4, requires_grad=True)) |
| gm = make_fx(f, tracing_mode="symbolic")(*example_inputs) |
| fgm = make_fx(f_wrapper(f), tracing_mode="symbolic")(*example_inputs) |
| xs = torch.ones(3, 4, 5, requires_grad=True) |
| y = torch.ones(4, 5, requires_grad=True) |
| |
| self.assertEqual(gm(xs, y), f(xs, y)) |
| |
| def count_mutable(gm): |
| c = 0 |
| for node in gm.graph.nodes: |
| if node.op == "call_function": |
| if node.target == torch.ops.higher_order.map_impl: |
| c += count_mutable(getattr(gm, str(node.args[0]))) |
| elif schema := getattr(node.target, "_schema", None): |
| c += int(schema.is_mutable) |
| return c |
| self.assertEqual(count_mutable(fgm), 0) |
| # One for forward, one for recomputation logic in backward |
| self.assertEqual(count_mutable(gm), 2) |
| |
| def test_map_functionalized(self): |
| def map_fn(x, y): |
| z = x + y |
| z.add_(4) |
| return z |
| |
| def f(xs, y): |
| return control_flow.map(map_fn, xs, y) |
| |
| example_inputs = (torch.ones(3, 2, 4), torch.ones(4)) |
| functional_f = torch.func.functionalize(f) |
| self.assertEqual(functional_f(*example_inputs), f(*example_inputs)) |
| |
| gm = make_fx(torch.func.functionalize(f))(*example_inputs) |
| self.assertEqual(gm(*example_inputs), f(*example_inputs)) |
| |
| gm = make_fx(torch.func.functionalize(f), tracing_mode="symbolic")(*example_inputs) |
| self.assertEqual(gm(*example_inputs), f(*example_inputs)) |
| |
| for node in gm.body_graph_0.graph.nodes: |
| if node.op == "call_function": |
| self.assertTrue(not node.target._schema.is_mutable) |
| self.check_map_count(gm, 1) |
| |
| def test_map_functionalized_aot_func(self): |
| def map_fn(x, y): |
| z = x + y |
| z.add_(4) |
| return z |
| |
| def f(xs, y): |
| return control_flow.map(map_fn, xs, y) |
| |
| def f_wrapper(func): |
| @functools.wraps(func) |
| def wrapper(*args, **kwargs): |
| torch._enable_functionalization(reapply_views=False) |
| try: |
| return pytree.tree_map(from_fun_old, func(*args, **kwargs)) |
| finally: |
| torch._disable_functionalization() |
| return wrapper |
| |
| example_inputs = (torch.ones(3, 2, 4), torch.ones(4)) |
| |
| gm = make_fx(f_wrapper(f))(*example_inputs) |
| |
| for node in gm.body_graph_0.graph.nodes: |
| if node.op == "call_function": |
| self.assertTrue(not node.target._schema.is_mutable) |
| |
| self.assertEqual(gm(*example_inputs), f(*example_inputs)) |
| |
| def test_map_functionalized_arg_mutation(self): |
| def map_fn(x, y): |
| y.add_(4) |
| return x + y |
| |
| def f(xs, y): |
| return control_flow.map(map_fn, xs, y) |
| |
| example_inputs = (torch.ones(3, 2, 4), torch.ones(4)) |
| functional_f = torch.func.functionalize(f) |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "torch.map is mutating the input!"): |
| functional_f(*example_inputs) |
| |
| def test_map_functionalized_elem_mutation(self): |
| def map_fn(x, y): |
| x.add_(4) |
| return x + y |
| |
| def f(xs, y): |
| return control_flow.map(map_fn, xs, y) |
| |
| example_inputs = (torch.ones(3, 2, 4), torch.ones(4)) |
| functional_f = torch.func.functionalize(f) |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "torch.map is mutating the input!"): |
| functional_f(*example_inputs) |
| |
| def test_cond_autograd_fail(self): |
| def true_fn(x): |
| return x.cos() |
| |
| def false_fn(x): |
| return x.sin() |
| |
| def f(x, y): |
| return control_flow.cond(x.shape[0] > 4, true_fn, false_fn, [y]) |
| |
| example_inputs = (torch.ones(3, 2, 4, requires_grad=True), torch.ones(4, requires_grad=True)) |
| with self.assertRaisesRegex(RuntimeError, "Autograd not implemented for cond"): |
| f(*example_inputs).sum().backward() |
| |
| # Ensure no error is thrown when not running backward |
| f(*example_inputs) |
| |
| def test_map_functionalized_elem_alias(self): |
| def map_fn(x): |
| x.view(x.shape) |
| return x |
| |
| def f(xs): |
| return control_flow.map(map_fn, xs) |
| |
| example_inputs = (torch.ones(3, 2, 4),) |
| functional_f = torch.func.functionalize(f) |
| with self.assertRaisesRegex(UnsupportedAliasMutationException, "torch.map is aliasing the input!"): |
| functional_f(*example_inputs) |
| |
| def test_nested_map_cond_real(self): |
| def true_fn(x, y): |
| return x * y |
| |
| def false_fn(x, y): |
| return x + y |
| |
| def f(x, pred, y): |
| return cond(pred, true_fn, false_fn, [x, y]) |
| |
| def g(pred, xs, y): |
| return control_flow.map(f, xs, pred, y) |
| |
| gm = make_fx(g, tracing_mode="real")( |
| torch.tensor(True), torch.ones(3, 2, 4), torch.ones(4) |
| ) |
| pred = torch.tensor(False) |
| x = torch.randn(3, 2, 4) |
| y = torch.randn(4) |
| res = gm(pred, x, y) |
| self.assertEqual(res, g(pred, x, y)) |
| self.check_map_count(gm, 1) |
| |
| def test_nested_map_cond_symbolic(self): |
| def true_fn(x, y): |
| return x * y |
| |
| def false_fn(x, y): |
| return x + y |
| |
| def f(x, pred, y): |
| return cond(pred, true_fn, false_fn, [x, y]) |
| |
| def g(pred, xs, y): |
| return control_flow.map(f, xs, pred, y) |
| |
| gm = make_fx(g, tracing_mode="symbolic")( |
| torch.tensor(True), torch.ones(3, 2, 4), torch.ones(4) |
| ) |
| pred = torch.tensor(False) |
| x = torch.randn(3, 2, 2) |
| y = torch.randn(2) |
| res = gm(pred, x, y) |
| self.assertEqual(res, g(pred, x, y)) |
| self.check_map_count(gm, 1) |
| |
| def test_nested_cond_map_cond_symbolic(self): |
| |
| def true_fn(x, y): |
| return x * y |
| |
| def false_fn(x, y): |
| return x + y |
| |
| def f(x, pred, y): |
| return cond(pred, true_fn, false_fn, [x, y]) |
| |
| def g(pred, xs, y): |
| return control_flow.map(f, xs, pred, y) |
| |
| def main_true_fn(pred, xs, y): |
| return g(pred, xs, y) * 2 |
| |
| def main_false_fn(pred, xs, y): |
| return g(pred, xs, y) + 1 |
| |
| def main(p, pred, xs, y): |
| return cond(p, main_true_fn, main_false_fn, [pred, xs, y]) |
| |
| gm = make_fx(main, tracing_mode="symbolic")( |
| torch.tensor(True), torch.tensor(True), torch.ones(3, 2, 4), torch.ones(4) |
| ) |
| p = torch.tensor(False) |
| pred = torch.tensor(False) |
| xs = torch.randn(3, 2, 2) |
| y = torch.randn(2) |
| res = gm(p, pred, xs, y) |
| self.assertEqual(res, main(p, pred, xs, y)) |
| self.check_map_count(gm, 2) |
| |
| def test_cond_with_sym_pred(self): |
| def true_fn(x): |
| return x + x |
| |
| def false_fn(x): |
| return x * x |
| |
| def foo(x): |
| return cond(x.shape[0] == 4, true_fn, false_fn, [x]) |
| |
| gm = make_fx(foo, tracing_mode="symbolic")(torch.ones(3, 2, 1)) |
| # The symbols in make_fx's shape_env should not be specialized. |
| self.assertEqual(len(gm.shape_env.guards), 0) |
| |
| self.assertExpectedInline(gm.code.strip(), """\ |
| def forward(self, x_1): |
| sym_size_int = torch.ops.aten.sym_size.int(x_1, 0) |
| eq = sym_size_int == 4; sym_size_int = None |
| true_graph_0 = self.true_graph_0 |
| false_graph_0 = self.false_graph_0 |
| conditional = torch.ops.higher_order.cond(eq, true_graph_0, false_graph_0, [x_1]); eq = true_graph_0 = false_graph_0 = x_1 = None |
| getitem = conditional[0]; conditional = None |
| return getitem""") # noqa: B950 |
| |
| # We expect the traced graph module to work even if input size changes. |
| x = torch.ones(4, 3, 2) |
| self.assertEqual(gm(x), true_fn(x)) |
| self.assertEqual(foo(x), true_fn(x)) |
| |
| |
| def _check_closure_correctly_lifted(self, f, *, args, exp_res, exp_arg_num): |
| assert isinstance(args, (tuple, list)) |
| self.assertEqual(f(*args), exp_res) |
| gm = make_fx(f)(*args) |
| gm.print_readable() |
| self.assertEqual(gm(*args), exp_res) |
| |
| def cnt_placeholder(gm): |
| return len([node for node in gm.graph.nodes if node.op == "placeholder"]) |
| placeholder_cnts = [cnt_placeholder(mod) for mod in gm.children()] |
| self.assertTrue(all(cnt == exp_arg_num for cnt in placeholder_cnts)) |
| |
| def _check_closure_correctly_lifted_with_mutation(self, f, closures_to_be_mutated, *, args, exp_arg_num): |
| exp_res = f(*args) |
| self._check_closure_correctly_lifted(f, args=args, exp_res=exp_res, exp_arg_num=exp_arg_num) |
| |
| for closure in closures_to_be_mutated: |
| closure.add(-1) |
| new_exp_res = f(*args) |
| |
| self._check_closure_correctly_lifted(f, args=args, exp_res=new_exp_res, exp_arg_num=exp_arg_num) |
| |
| def test_cond_with_tensor_closure(self): |
| a = torch.ones(2, 3) |
| b = torch.ones(2, 3) + 1 |
| |
| def true_fn(x): |
| return x + a |
| |
| def false_fn(x): |
| return x + b |
| |
| def foo(x): |
| return cond(x.shape[0] == 4, true_fn, false_fn, [x]) |
| |
| |
| # expected branches takes [x, a, b] as input |
| inp = torch.randn(2, 3) |
| self._check_closure_correctly_lifted_with_mutation(foo, (a, b), args=(inp, ), exp_arg_num=3) |
| |
| def test_cond_with_tensor_closure_graph_module(self): |
| a = torch.ones(2, 3) |
| b = torch.ones(2, 3) + 1 |
| |
| def true_fn(x): |
| return x + a |
| |
| def false_fn(x): |
| return x + b |
| |
| def foo(x): |
| return cond(x.shape[0] == 4, true_fn, false_fn, [x]) |
| |
| |
| # expected branches takes [x, a, b] as input |
| inp = torch.randn(2, 3) |
| |
| gm = make_fx(foo)(inp) |
| |
| self.assertExpectedInline(gm.code.strip(), """\ |
| def forward(self, x_1): |
| true_graph_0 = self.true_graph_0 |
| false_graph_0 = self.false_graph_0 |
| _tensor_constant0 = self._tensor_constant0 |
| _tensor_constant1 = self._tensor_constant1 |
| conditional = torch.ops.higher_order.cond(False, true_graph_0, false_graph_0, [x_1, _tensor_constant0, _tensor_constant1]); true_graph_0 = false_graph_0 = x_1 = _tensor_constant0 = _tensor_constant1 = None |
| getitem = conditional[0]; conditional = None |
| return getitem""") # noqa: B950 |
| self.assertExpectedInline(gm.true_graph_0.code.strip(), """\ |
| def forward(self, arg0_1, arg1_1, arg2_1): |
| add = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None |
| return (add,)""") |
| |
| def test_cond_with_module_param_closure(self): |
| class Mod(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.register_parameter("param", torch.nn.Parameter(torch.ones(2, 3), requires_grad=False)) |
| self.register_buffer("buffer", torch.ones(2, 3) + 1) |
| |
| my_mode = Mod() |
| |
| def true_fn(x): |
| return x + my_mode.param |
| |
| def false_fn(x): |
| return x + my_mode.buffer |
| |
| def foo(x): |
| return cond(x.shape[0] == 4, true_fn, false_fn, [x]) |
| |
| inp = torch.ones(2, 3) |
| # expected both branches takes (x, param, buffer) |
| self._check_closure_correctly_lifted_with_mutation(foo, (my_mode.param, my_mode.buffer), args=(inp,), exp_arg_num=3) |
| |
| |
| def test_cond_with_module_python_scalar_closure(self): |
| |
| def foo(x): |
| a = torch.ones(1, 1) |
| b = 1 |
| |
| def true_fn(x): |
| return x + a |
| |
| def false_fn(x): |
| return x + b |
| return cond(x.shape[0] == 4, true_fn, false_fn, [x]) |
| |
| inp = torch.ones(2, 3) |
| res = inp + 1 |
| # python scalar b is not lifted as input, so both branches take (x, a) |
| self._check_closure_correctly_lifted(foo, args=(inp,), exp_res=res, exp_arg_num=2) |
| |
| def test_cond_nested_with_closure(self): |
| a = torch.ones(1, 1) |
| b = torch.ones(1, 1) + 1 |
| |
| def inner_true_fn(x): |
| return x + a |
| |
| def inner_false_fn(x): |
| return x + b |
| |
| def foo(x): |
| def true_fn(x): |
| return cond(x.shape[0] == 2, inner_true_fn, inner_false_fn, [x]) |
| |
| def false_fn(x): |
| return cond(x.shape[0] > 4, inner_true_fn, inner_false_fn, [x]) |
| return cond(x.shape[0] == 4, true_fn, false_fn, [x]) |
| |
| inp = torch.ones(2, 3) |
| # For top-level cond, it take 5 arguments (x, a, b, a, b) |
| # For second-level conds, it takes (x, a, b) |
| self._check_closure_correctly_lifted_with_mutation(foo, (a, b), args=(inp,), exp_arg_num=5) |
| |
| def test_cond_nested_with_closure_graph_module(self): |
| a = torch.ones(1, 1) |
| b = torch.ones(1, 1) + 1 |
| |
| def inner_true_fn(x): |
| return x + a |
| |
| def inner_false_fn(x): |
| return x + b |
| |
| def foo(x): |
| def true_fn(x): |
| return cond(x.shape[0] == 2, inner_true_fn, inner_false_fn, [x]) |
| |
| def false_fn(x): |
| return cond(x.shape[0] > 4, inner_true_fn, inner_false_fn, [x]) |
| return cond(x.shape[0] == 4, true_fn, false_fn, [x]) |
| |
| def test_map_unfunc_boolean_tensor_for_nested_map_cond(self): |
| def map_fn(pred, x): |
| def fn(x, pred): |
| return control_flow.cond(pred, lambda x: x * 2, lambda x: x / 2 , (x,)) |
| return control_flow.map(fn, x, pred) |
| |
| def f_wrapper(func): |
| @functools.wraps(func) |
| def wrapper(*args, **kwargs): |
| torch._enable_functionalization(reapply_views=False) |
| try: |
| func_args = pytree.tree_map( |
| lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x, args) |
| func_kwargs = pytree.tree_map( |
| lambda x: to_fun_old(x) if isinstance(x, torch.Tensor) else x, kwargs) |
| return pytree.tree_map(from_fun_old, func(*func_args, **func_kwargs)) |
| finally: |
| torch._disable_functionalization() |
| return wrapper |
| |
| gm = make_fx(f_wrapper(map_fn))(torch.tensor(True), torch.ones([2, 3], requires_grad=False)) |
| self.assertExpectedInline(gm.code.strip(), """\ |
| def forward(self, pred_1, x_1): |
| body_graph_0 = self.body_graph_0 |
| map_impl = torch.ops.higher_order.map_impl(body_graph_0, 1, x_1, pred_1);\ |
| body_graph_0 = x_1 = pred_1 = None |
| getitem = map_impl[0]; map_impl = None |
| return getitem""") |
| self.assertExpectedInline(gm.body_graph_0.code.strip(), """\ |
| def forward(self, arg0_1, arg1_1): |
| true_graph_0 = self.true_graph_0 |
| false_graph_0 = self.false_graph_0 |
| conditional = torch.ops.higher_order.cond(arg1_1, true_graph_0, false_graph_0, [arg0_1]); arg1_1 = true_graph_0 = false_graph_0 = arg0_1 = None |
| getitem = conditional[0]; conditional = None |
| return [getitem]""") # noqa: B950 |
| |
| def test_cond_make_fx_preserve_stack_trace_for_nodes_in_subgraph(self): |
| |
| def true_fn(x): |
| return x + x.cos() |
| |
| def false_fn(x): |
| return x * x.sin() |
| |
| def foo(x): |
| return cond(x.shape[0] == 4, true_fn, false_fn, (x,)) |
| inp = torch.randn([4, 3]) |
| gm, _ = torch._dynamo.export(foo)(inp) |
| |
| def run_with_interpreter(*args): |
| with torch.fx.traceback.preserve_node_meta(): |
| return torch.fx.Interpreter(gm).run(*args) |
| new_gm = make_fx(run_with_interpreter)(inp) |
| |
| |
| checked_ops = {"add", "mul", "sin", "cos"} |
| checked_meta = ["source_fn_stack", "stack_trace"] |
| all_source_fns = collect_meta_for_filtered_nodes(gm, checked_ops, checked_meta) |
| new_source_fns = collect_meta_for_filtered_nodes(new_gm, checked_ops, checked_meta) |
| self.assertEqual(all_source_fns, new_source_fns) |
| |
| @unittest.skipIf(TEST_WITH_TORCHDYNAMO, "triggers cache limit for foo and changes unique_graphs count.") |
| def test_cond_no_dynamo_cache_limit(self): |
| torch._dynamo.reset() |
| counters = torch._dynamo.utils.counters |
| counters.clear() |
| |
| def foo(x, true_fn, false_fn): |
| return cond(x.shape[0] == 4, true_fn, false_fn, (x,)) |
| |
| inp = torch.ones(3, 4) |
| exp_out = inp.sin() |
| iter_n = torch._dynamo.config.cache_size_limit + 1 |
| |
| # Need this because Dynamo checks lambda code ID not object itself. |
| def make_dummy_fn(op): |
| exec(f"temp = lambda x: x.{op}()") |
| return locals()["temp"] |
| |
| for _ in range(iter_n): |
| # each lambda has a different object id thus fails the guard |
| self.assertEqual(foo(inp, make_dummy_fn("cos"), make_dummy_fn("sin")), exp_out) |
| |
| # each iteration captures a cond and a getitem from the tuple output |
| self.assertEqual(counters["stats"]["calls_captured"], iter_n * 2) |
| self.assertEqual(counters["stats"]["unique_graphs"], iter_n) |
| |
| def test_cond_with_consecutive_make_fx_symbolic(self): |
| def true_fn(x): |
| return x - x.cos() |
| |
| def false_fn(x): |
| return x + x.sin() |
| |
| def foo(x): |
| return cond(x.shape[0] == 4, true_fn, false_fn, [x]) |
| |
| inps = (torch.ones(3, 4), torch.ones(3, 5), torch.ones(5, 4), torch.ones(5, 3)) |
| for inp in inps: |
| gm = make_fx(foo, tracing_mode='symbolic')(torch.ones(3, 4)) |
| self.assertExpectedInline(gm.code.strip(), """\ |
| def forward(self, x_1): |
| sym_size_int = torch.ops.aten.sym_size.int(x_1, 0) |
| eq = sym_size_int == 4; sym_size_int = None |
| true_graph_0 = self.true_graph_0 |
| false_graph_0 = self.false_graph_0 |
| conditional = torch.ops.higher_order.cond(eq, true_graph_0, false_graph_0, [x_1]); eq = true_graph_0 = false_graph_0 = x_1 = None |
| getitem = conditional[0]; conditional = None |
| return getitem""") # noqa: B950 |
| |
| self.assertExpectedInline(gm.true_graph_0.code.strip(), """\ |
| def forward(self, arg0_1): |
| cos = torch.ops.aten.cos.default(arg0_1) |
| sub = torch.ops.aten.sub.Tensor(arg0_1, cos); arg0_1 = cos = None |
| return (sub,)""") |
| |
| self.assertExpectedInline(gm.false_graph_0.code.strip(), """\ |
| def forward(self, arg0_1): |
| sin = torch.ops.aten.sin.default(arg0_1) |
| add = torch.ops.aten.add.Tensor(arg0_1, sin); arg0_1 = sin = None |
| return (add,)""") |
| |
| def _create_test_fns_for_cond(self, pred, inner_most_fn, operands, closure_list, nested_level): |
| if nested_level == 0: |
| if len(closure_list) > 0: |
| def true_fn(*operands): |
| return inner_most_fn(*operands) + inner_most_fn(*closure_list) |
| |
| def false_fn(*operands): |
| return inner_most_fn(*operands) - inner_most_fn(*closure_list) |
| else: |
| def true_fn(*operands): |
| return inner_most_fn(*operands) |
| |
| def false_fn(*operands): |
| return inner_most_fn(*operands) |
| |
| def fn(*operands): |
| if len(operands) == 0 and len(closure_list) == 0: |
| return torch.zeros(1) |
| return cond(pred, true_fn, false_fn, operands) |
| return operands, fn |
| else: |
| args, inner_fn = self._create_test_fns_for_cond(pred <= 0, inner_most_fn, operands, closure_list, nested_level - 1) |
| |
| def true_fn(*operands): |
| return inner_most_fn(*operands) + inner_fn(*args) |
| |
| def false_fn(*operands): |
| return inner_most_fn(*operands) - inner_fn(*args) |
| |
| def fn(*operands): |
| if len(operands) == 0 and len(closure_list) == 0: |
| return torch.ones(1) |
| return cond(pred, true_fn, false_fn, operands) |
| return operands, fn |
| |
| def _init_predicate(self, pred_type): |
| if pred_type == "bool": |
| return True |
| elif pred_type == "intTensor": |
| return torch.tensor(1) |
| elif pred_type == "floatTensor": |
| return torch.tensor(1.) |
| elif pred_type == "boolTensor": |
| return torch.tensor(False) |
| else: |
| raise NotImplementedError |
| |
| def _init_fn(self, inner_fn_type): |
| if inner_fn_type == "function": |
| return reduce_func |
| elif inner_fn_type == "module": |
| return ReduceMod() |
| elif inner_fn_type == "object": |
| return ReduceObj() |
| else: |
| raise NotImplementedError |
| |
| @parametrize("predType", ["bool", "intTensor", "floatTensor", "boolTensor"]) |
| @parametrize("innerFnType", ["function", "module", "object"]) |
| @parametrize("nOperands", [0, 1]) |
| @parametrize("nClosure", [0, 1]) |
| @parametrize("nesting", [0, 2]) |
| def test_cond_tracing_with_valid_inputs(self, predType, innerFnType, nOperands, nClosure, nesting): |
| pred = self._init_predicate(predType) |
| inner_fn = self._init_fn(innerFnType) |
| operands = [torch.ones(2, 3) + i for i in range(nOperands)] |
| closure = [torch.ones(2, 3) - i for i in range(nClosure)] |
| args, fn = self._create_test_fns_for_cond(pred, inner_fn, operands, closure, nesting) |
| eager_res = fn(*args) |
| for tracing_mode in ["symbolic", "fake", "real"]: |
| # set _allow_non_fake_inputs = True to allow fake prop through closures |
| with self.subTest(tracing_mode=tracing_mode): |
| gm = make_fx(fn, tracing_mode=tracing_mode, _allow_non_fake_inputs=True)(*args) |
| self.assertEqual(gm(*args), eager_res) |
| |
| @parametrize("predType", ["boolTensor"]) |
| @parametrize("innerFnType", ["function", "module", "object"]) |
| @parametrize("nOperands", [1, 2]) |
| @parametrize("nClosure", [0, 1]) |
| @parametrize("nesting", [0]) |
| def test_cond_vmap(self, predType, innerFnType, nOperands, nClosure, nesting): |
| pred = self._init_predicate(predType) |
| inner_fn = self._init_fn(innerFnType) |
| operands = [torch.ones(2, 3) + i for i in range(nOperands)] |
| closure = [torch.ones(2, 3) - i for i in range(nClosure)] |
| args, fn = self._create_test_fns_for_cond(pred, inner_fn, operands, closure, nesting) |
| eager_res = fn(*args) |
| out = torch.vmap(fn)(*args) |
| if nClosure == 0: |
| self.assertEqual(eager_res, out) |
| else: |
| self.assertEqual(eager_res, out[0]) |
| self.assertEqual(eager_res, out[1]) |
| |
| def test_cond_vmap_simple(self): |
| |
| def fn(x): |
| return torch.cond( |
| pred=torch.tensor([True]), |
| true_fn=lambda x: x + 100, |
| false_fn=lambda x: x, |
| operands=(x,) |
| ) |
| |
| a = torch.arange(15).reshape((3, 5)) |
| res = torch.vmap(fn, in_dims=(0,))(a) |
| self.assertEqual(res.shape, (3, 5)) |
| self.assertEqual(res, a + 100) |
| |
| def test_cond_vmap_multiple_inputs(self): |
| |
| def fn(x, y): |
| return torch.cond( |
| pred=x.sum() < y.sum(), |
| true_fn=lambda x, y: x + 100, |
| false_fn=lambda x, y: y, |
| operands=(x, y) |
| ) |
| |
| a = torch.arange(15).reshape(3, 5) |
| b = torch.ones_like(a) + 3 |
| res = torch.vmap(fn, in_dims=(0, 0))(a, b) |
| expected = torch.tensor( |
| [ |
| [100, 101, 102, 103, 104], |
| [4, 4, 4, 4, 4], |
| [4, 4, 4, 4, 4] |
| ] |
| ) |
| self.assertEqual(res.shape, (3, 5)) |
| self.assertEqual(expected, res) |
| |
| def test_cond_vmap_single_input_with_closure(self): |
| |
| a = torch.ones((3, 5)) + 3 |
| c = torch.arange(5) |
| |
| def fn(x): |
| return torch.cond( |
| pred=torch.tensor([True]), |
| true_fn=lambda x: x + c, |
| false_fn=lambda x: x - c, |
| operands=(x,) |
| ) |
| |
| res = torch.vmap(fn, in_dims=(0,))(a,) |
| self.assertEqual(a + c, res) |
| |
| def test_cond_vmap_multiple_args_with_closure(self): |
| |
| a = torch.ones((3, 5), dtype=torch.int64) + 3 |
| b = torch.arange(15).reshape(3, 5) |
| c = torch.arange(5) |
| |
| def fn(x, y): |
| return torch.cond( |
| pred=torch.tensor([False]), |
| true_fn=lambda x, y: x + c, |
| false_fn=lambda x, y: y - c, |
| operands=(x, y) |
| ) |
| |
| res = torch.vmap(fn)(a, b) |
| self.assertEqual(b - c, res) |
| |
| @parametrize("nClosure", [0, 1]) |
| def test_cond_vmap_multiple_outputs(self, nClosure): |
| |
| if nClosure: |
| c = torch.ones(5, dtype=torch.int64) + 5 |
| |
| def fn(x): |
| return torch.cond( |
| pred=torch.tensor([True]), |
| true_fn=lambda x: (x + c, x - c), |
| false_fn=lambda x: (x, x), |
| operands=(x,) |
| ) |
| else: |
| def fn(x): |
| return torch.cond( |
| pred=torch.tensor([True]), |
| true_fn=lambda x: (x + 1, x - 1), |
| false_fn=lambda x: (x, x), |
| operands=(x,) |
| ) |
| |
| a = torch.arange(15).reshape(3, 5) |
| res = torch.vmap(fn)(a,) |
| self.assertEqual(len(res), 2) |
| if nClosure: |
| self.assertEqual(res, (a + c, a - c)) |
| else: |
| self.assertEqual(res, (a + 1, a - 1)) |
| |
| def test_vmap_vmap(self): |
| def fn(x): |
| return torch.cond( |
| pred=torch.tensor([True]), |
| true_fn=lambda x: x + 1, |
| false_fn=lambda x: x - 1, |
| operands=(x,) |
| ) |
| |
| def wrapper(x): |
| return torch.vmap(fn)(x) |
| |
| a = torch.ones((3, 4, 5)) |
| res = torch.vmap(wrapper)(a) |
| self.assertEqual(res, a + 1) |
| |
| instantiate_parametrized_tests(TestControlFlowTraced) |
| |
| if __name__ == '__main__': |
| run_tests() |