blob: eacffc0be3d59d4d0830939d45f58b0cc4db37b9 [file] [log] [blame]
import warnings
import importlib
from inspect import getmembers, isfunction
from typing import Dict, Tuple, Any, Union
# The symbolic registry "_registry" is a dictionary that maps operators
# (for a specific domain and opset version) to their symbolic functions.
# An operator is defined by its domain, opset version, and opname.
# The keys are tuples (domain, version), (where domain is a string, and version is an int),
# and the operator's name (string).
# The map's entries are as follows : _registry[(domain, version)][op_name] = op_symbolic
_registry: Dict[Tuple[str, int], Dict] = {}
_symbolic_versions: Dict[Union[int, str], Any] = {}
from torch.onnx.symbolic_helper import _onnx_stable_opsets, _onnx_main_opset
for opset_version in _onnx_stable_opsets + [_onnx_main_opset]:
module = importlib.import_module("torch.onnx.symbolic_opset{}".format(opset_version))
_symbolic_versions[opset_version] = module
def register_version(domain, version):
if not is_registered_version(domain, version):
global _registry
_registry[(domain, version)] = {}
register_ops_in_version(domain, version)
def register_ops_helper(domain, version, iter_version):
version_ops = get_ops_in_version(iter_version)
for op in version_ops:
if op[0] == "_len":
op = ("len", op[1])
if op[0] == "_list":
op = ("list", op[1])
if op[0] == "_any":
op = ("any", op[1])
if op[0] == "_all":
op = ("all", op[1])
domain_register = domain
if op[0].startswith("prim_"):
op = (op[0][5:], op[1])
domain_register = "prim"
if isfunction(op[1]) and not is_registered_op(op[0], domain_register, version):
register_op(op[0], op[1], domain_register, version)
def register_ops_in_version(domain, version):
# iterates through the symbolic functions of
# the specified opset version, and the previous
# opset versions for operators supported in
# previous versions.
# Opset 9 is the base version. It is selected as the base version because
# 1. It is the first opset version supported by PyTorch export.
# 2. opset 9 is more robust than previous opset versions. Opset versions like 7/8 have limitations
# that certain basic operators cannot be expressed in ONNX. Instead of basing on these limitations,
# we chose to handle them as special cases separately.
# Backward support for opset versions beyond opset 7 is not in our roadmap.
# For opset versions other than 9, by default they will inherit the symbolic functions defined in
# symbolic_opset9.py.
# To extend support for updated operators in different opset versions on top of opset 9,
# simply add the updated symbolic functions in the respective symbolic_opset{version}.py file.
# Checkout topk in symbolic_opset10.py, and upsample_nearest2d in symbolic_opset8.py for example.
iter_version = version
while iter_version != 9:
register_ops_helper(domain, version, iter_version)
if iter_version > 9:
iter_version = iter_version - 1
else:
iter_version = iter_version + 1
register_ops_helper(domain, version, 9)
def get_ops_in_version(version):
return getmembers(_symbolic_versions[version])
def is_registered_version(domain, version):
global _registry
return (domain, version) in _registry
def register_op(opname, op, domain, version):
if domain is None or version is None:
warnings.warn("ONNX export failed. The ONNX domain and/or version to register are None.")
global _registry
if not is_registered_version(domain, version):
_registry[(domain, version)] = {}
_registry[(domain, version)][opname] = op
def is_registered_op(opname, domain, version):
if domain is None or version is None:
warnings.warn("ONNX export failed. The ONNX domain and/or version are None.")
global _registry
return (domain, version) in _registry and opname in _registry[(domain, version)]
def unregister_op(opname, domain, version):
global _registry
if is_registered_op(opname, domain, version):
del _registry[(domain, version)][opname]
if not _registry[(domain, version)]:
del _registry[(domain, version)]
else:
warnings.warn("The opname " + opname + " is not registered.")
def get_op_supported_version(opname, domain, version):
iter_version = version
while iter_version <= _onnx_main_opset:
ops = [op[0] for op in get_ops_in_version(iter_version)]
if opname in ops:
return iter_version
iter_version += 1
return None
def get_registered_op(opname, domain, version):
if domain is None or version is None:
warnings.warn("ONNX export failed. The ONNX domain and/or version are None.")
global _registry
if not is_registered_op(opname, domain, version):
msg = "Exporting the operator " + opname + " to ONNX opset version " + str(version) + " is not supported. "
supported_version = get_op_supported_version(opname, domain, version)
if supported_version is not None:
msg += "Support for this operator was added in version " + str(supported_version) + ", try exporting with this version."
else:
msg += "Please feel free to request support or submit a pull request on PyTorch GitHub."
raise RuntimeError(msg)
return _registry[(domain, version)][opname]