| |
| import torch |
| import torch.onnx.symbolic_helper as sym_help |
| import torch.onnx.symbolic_opset9 as sym_opset9 |
| |
| from torch.onnx.symbolic_helper import parse_args, _unimplemented, _block_list_in_opset, _try_get_scalar_type, ScalarType |
| from torch.onnx.symbolic_opset9 import _cast_Float # type: ignore[attr-defined] |
| |
| import warnings |
| |
| # Note [ONNX operators that are added/updated from opset 8 to opset 9] |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| # New operators: |
| # Compress |
| # ConstantOfShape |
| # EyeLike |
| # MaxUnpool |
| # OneHot |
| # Sinh |
| # Cosh |
| # Asinh |
| # Acosh |
| # Atanh |
| # Shrink |
| # IsNaN |
| # Sign |
| # Erf |
| # Scatter |
| # Where |
| # NonZero |
| # TfIdfVectorizer |
| # MeanVarianceNormalization |
| # |
| # Updated operators: |
| # BatchNormalization: removed spatial attribute. |
| # Greater, Less, Constant, MatMul, PRelu, Gemm, Flatten: more data types{integers} supported. |
| # Cast: more data types{string} supported. |
| # Upsample: moved scales from attribute to input. |
| # Scan |
| |
| block_listed_operators = [ |
| "nonzero", "where", "scatter", "scatter_add", "erf", "sign", "isnan", "gather", |
| "arange", "masked_fill", |
| "index_fill", "index_copy", "repeat_interleave", |
| "isnan", |
| "any", "all" |
| ] |
| |
| for block_listed_op in block_listed_operators: |
| vars()[block_listed_op] = _block_list_in_opset(block_listed_op) |
| |
| |
| def _interpolate(name, dim, interpolate_mode): |
| def symbolic_fn(g, input, output_size, *args): |
| scales, align_corners = sym_help._get_interpolate_attributes(g, interpolate_mode, args) |
| sym_help._interpolate_warning(interpolate_mode) |
| align_corners = sym_help._maybe_get_scalar(align_corners) |
| if align_corners: |
| return _unimplemented(name, "align_corners == True") |
| output_size = sym_help._maybe_get_const(output_size, "is") |
| if sym_help._is_value(output_size): |
| return _unimplemented(name, "torch._C.Value (output_size) indexing") |
| if scales is None: |
| scales = [1. if i < 2 else |
| float(output_size[-(dim - i)]) / float(input.type().sizes()[-(dim - i)]) |
| for i in range(0, dim)] |
| return g.op("Upsample", input, mode_s=interpolate_mode, scales_f=scales) |
| return symbolic_fn |
| |
| |
| upsample_nearest1d = _interpolate("upsample_nearest1d", 3, "nearest") |
| upsample_nearest2d = _interpolate("upsample_nearest2d", 4, "nearest") |
| upsample_nearest3d = _interpolate("upsample_nearest3d", 5, "nearest") |
| upsample_linear1d = _interpolate("upsample_linear1d", 3, "linear") |
| upsample_bilinear2d = _interpolate("upsample_bilinear2d", 4, "linear") |
| upsample_trilinear3d = _interpolate("upsample_trilinear3d", 5, "linear") |
| |
| |
| def __interpolate(g, input, size, scale_factor, mode, align_corners, recompute_scale_factor, antialias): |
| align_corners = sym_help._maybe_get_const(align_corners, "b") |
| if not sym_help._is_none(align_corners) and align_corners: |
| return _unimplemented("interpolate", "align_corners == True") |
| |
| if not sym_help._is_none(scale_factor) and sym_help._is_value(scale_factor): |
| return _unimplemented("interpolate", "dynamic scales in opset 8") |
| |
| if not sym_help._is_none(size) and sym_help._is_value(size): |
| return _unimplemented("interpolate", "dynamic size in opset 8") |
| |
| scales, mode = sym_help._interpolate_get_scales_and_mode(g, input, size, scale_factor, |
| mode , align_corners) |
| return g.op("Upsample", input, mode_s=mode, scales_f=scales) |
| |
| |
| # NOTE: We should create a wrapper for this kind of operation, after resolving the shape/type propagation |
| # issue for "cast" operators. Some symbolic functions depend on shape information of input tensor, which |
| # is lost after casting. |
| def _try_cast_integer_to_float(g, *args): |
| floating_scalar_types = ["Half", "Float", "Double"] |
| old_type = None |
| # Cast the input tensor to Float if its scalarType is known and is not floating number. |
| # If casting is performed, return the old scalarType, otherwise return None. |
| arg0_type = args[0].type().scalarType() |
| if arg0_type is not None: |
| old_type = arg0_type |
| if old_type not in floating_scalar_types: |
| args = tuple(_cast_Float(g, arg, False) for arg in args) |
| else: |
| return (None,) + args |
| else: |
| warnings.warn("Only floating datatype is supported for these operators: " |
| "{Greater, Less, MatMul, PRelu, Gemm, Flatten}. This might cause " |
| "the onnx model to be incorrect, if inputs have integer datatypes.") |
| return (old_type,) + args |
| |
| |
| def _cast_to_type(g, input, to_type): |
| if to_type is None: |
| return input |
| return getattr(sym_opset9, "_cast_{}".format(to_type))(g, input, False) |
| |
| |
| def _comparison_operator(g, input, other, op_name): |
| other = sym_help._maybe_get_scalar(other) |
| other = sym_help._if_scalar_type_as(g, other, input) |
| _, input, other = _try_cast_integer_to_float(g, input, other) |
| return g.op(op_name, input, other) |
| |
| |
| # NOTE: For symbolics {gt, lt, bmm, matmul, prelu, mm, addmm, view, flatten}, |
| # integer input type not supported in opset8. Cast to float if possible. |
| def gt(g, input, other): |
| return _comparison_operator(g, input, other, "Greater") |
| |
| |
| def lt(g, input, other): |
| return _comparison_operator(g, input, other, "Less") |
| |
| |
| def bmm(g, self, other): |
| if _try_get_scalar_type(self): |
| old_type, self, other = _try_cast_integer_to_float(g, self, other) |
| return _cast_to_type(g, g.op("MatMul", self, other), old_type) |
| else: |
| return g.op("MatMul", self, other) |
| |
| |
| def matmul(g, self, other): |
| return bmm(g, self, other) |
| |
| |
| def prelu(g, self, weight): |
| self_rank = sym_help._get_tensor_rank(self) |
| if self_rank is not None and self_rank > 2: |
| weight = g.op("Unsqueeze", weight, axes_i=list(range(1, self_rank - 1))) |
| if _try_get_scalar_type(self): |
| old_type, self, weight = _try_cast_integer_to_float(g, self, weight) |
| return _cast_to_type(g, g.op("PRelu", self, weight), old_type) |
| else: |
| return g.op("PRelu", self, weight) |
| |
| |
| def mm(g, self, other): |
| # Create a dummy C tensor. Only needed for API purposes, the value is |
| # since beta = 0 |
| ty = sym_help._try_get_scalar_type(self, other).lower() |
| C = g.constant(0, [1], ty) |
| if _try_get_scalar_type(self): |
| old_type, self, other, C = _try_cast_integer_to_float(g, self, other, C) |
| return _cast_to_type(g, g.op("Gemm", self, other, C, beta_f=0.0, alpha_f=1.0), old_type) |
| else: |
| return g.op("Gemm", self, other, C, beta_f=0.0, alpha_f=1.0) |
| |
| |
| @parse_args("v", "v", "v", "t", "t") |
| def addmm(g, self, mat1, mat2, beta, alpha): |
| if _try_get_scalar_type(self): |
| old_type, self, mat1, mat2 = _try_cast_integer_to_float(g, self, mat1, mat2) |
| return _cast_to_type( |
| g, g.op("Gemm", mat1, mat2, self, |
| beta_f=sym_help._scalar(beta), alpha_f=sym_help._scalar(alpha)), old_type) |
| else: |
| return g.op("Gemm", mat1, mat2, self, beta_f=sym_help._scalar(beta), alpha_f=sym_help._scalar(alpha)) |
| |
| |
| def flatten(g, input, start_dim, end_dim): |
| start_dim_i = sym_help._get_const(start_dim, "i", "start_dim") |
| end_dim_i = sym_help._get_const(end_dim, "i", "end_dim") |
| |
| dim = input.type().dim() |
| if end_dim_i < 0 : |
| end_dim_i = dim + end_dim_i |
| # use ONNX's Flatten operator for cases where the output shape is 2D |
| if start_dim_i == 1 and end_dim_i == dim - 1 : |
| if _try_get_scalar_type(input): |
| old_type, input = _try_cast_integer_to_float(g, input) |
| return _cast_to_type(g, g.op("Flatten", input, axis_i=start_dim_i), old_type) |
| else: |
| return g.op("Flatten", input, axis_i=start_dim_i) |
| if start_dim_i == 0 and end_dim_i == dim - 2 : |
| if _try_get_scalar_type(input): |
| old_type, input = _try_cast_integer_to_float(g, input) |
| return _cast_to_type(g, g.op("Flatten", input, axis_i=end_dim_i + 1), old_type) |
| else: |
| return g.op("Flatten", input, axis_i=end_dim_i + 1) |
| |
| return sym_opset9.flatten(g, input, start_dim, end_dim) |
| |
| |
| def _constant_fill(g, sizes, dtype, const_value): |
| if dtype is None: |
| dtype = ScalarType.FLOAT |
| if not sym_help.scalar_type_to_pytorch_type[dtype].is_floating_point: |
| result = g.op( |
| "ConstantFill", sizes, dtype_i=sym_help.cast_pytorch_to_onnx["Float"], input_as_shape_i=1, value_f=const_value) |
| return sym_help._cast_func_template(sym_help.scalar_type_to_onnx[dtype], g, result, None) |
| else: |
| return g.op("ConstantFill", sizes, dtype_i=sym_help.scalar_type_to_onnx[dtype], input_as_shape_i=1, value_f=const_value) |
| |
| @parse_args("v", "i", "v", "v", "v", "v") |
| def empty(g, sizes, dtype, layout, device, pin_memory=False, memory_format=None): |
| return zeros(g, sizes, dtype, layout, device, pin_memory) |
| |
| |
| @parse_args("v", "i", "v", "v", "v", "v") |
| def empty_like(g, input, dtype, layout, device, pin_memory=False, memory_format=None): |
| return zeros_like(g, input, dtype, layout, device, pin_memory) |
| |
| @parse_args("v", "i", "v", "v", "v") |
| def zeros(g, sizes, dtype, layout, device, pin_memory=False): |
| # NOTE: no way to set device and layout in ONNX, so we ignore it |
| return _constant_fill(g, sizes, dtype, 0) |
| |
| |
| @parse_args("v", "i", "v", "v", "v", "v") |
| def zeros_like(g, input, dtype, layout, device, pin_memory=False, memory_format=None): |
| shape = g.op("Shape", input) |
| return _constant_fill(g, shape, dtype, 0) |
| |
| |
| @parse_args("v", "i", "v", "v", "v") |
| def ones(g, sizes, dtype, layout, device, pin_memory=False): |
| return _constant_fill(g, sizes, dtype, 1) |
| |
| |
| @parse_args("v", "i", "v", "v", "v", "v") |
| def ones_like(g, input, dtype, layout, device, pin_memory=False, memory_format=None): |
| shape = g.op("Shape", input) |
| return _constant_fill(g, shape, dtype, 1) |
| |
| |
| def full(g, sizes, value, dtype, layout, device, pin_memory=False): |
| const_value = sym_help._maybe_get_const(value, "t") |
| if sym_help._is_value(const_value): |
| tmp = zeros(g, sizes, dtype, layout, device) |
| return sym_opset9.add(g, tmp, value, g.op("Constant", value_t=torch.tensor(1))) |
| else: |
| dtype = sym_help._get_const(dtype, "i", "dtype") |
| return _constant_fill(g, sizes, dtype, const_value) |
| |
| |
| @parse_args("v", "f", "i", "v", "v", "v", "v") |
| def full_like(g, input, fill_value, dtype, layout, device, pin_memory=False, memory_format=None): |
| shape = g.op("Shape", input) |
| return _constant_fill(g, shape, dtype, fill_value) |
| |
| |
| def repeat(g, self, repeats): |
| if not sym_help._is_value(repeats): |
| repeats = g.op("Constant", value_t=torch.LongTensor(repeats)) |
| if sym_help._is_packed_list(repeats): |
| repeat_size_len = len(sym_help._unpack_list(repeats)) |
| else: |
| const_repeats = sym_help._maybe_get_const(repeats, "is") |
| repeat_size_len = len(const_repeats) |
| if self.isCompleteTensor(): |
| sizes = self.type().sizes() |
| diff_dims = repeat_size_len - len(sizes) |
| if diff_dims > 0: |
| self = sym_opset9.view(g, self, g.op("Constant", value_t=torch.tensor([1] * diff_dims + sizes))) |
| return g.op("Tile", self, repeats) |