| # EDITING THIS FILE? READ THIS FIRST! |
| # see Note [Edit Symbolic Files] in symbolic_helper.py |
| |
| # This file exports ONNX ops for opset 13 |
| import torch |
| import torch.onnx.symbolic_helper as sym_help |
| from torch.onnx.symbolic_helper import parse_args, _unimplemented |
| from torch.onnx.symbolic_opset9 import (overload_by_arg_count, _maybe_cast_reduce_op_input, |
| nonzero, expand, zeros, ones, size) |
| from torch.onnx.symbolic_opset11 import unsqueeze |
| from torch.onnx.utils import _add_block, _add_input_to_block, _add_output_to_block |
| |
| |
| # EDITING THIS FILE? READ THIS FIRST! |
| # see Note [Edit Symbolic Files] in symbolic_helper.py |
| |
| # This file exports ONNX ops for opset 13 |
| |
| |
| @parse_args("v", "i", "none") |
| def softmax(g, input, dim, dtype=None): |
| softmax = g.op("Softmax", input, axis_i=dim) |
| if dtype and dtype.node().kind() != "prim::Constant": |
| parsed_dtype = sym_help._get_const(dtype, "i", "dtype") |
| softmax = g.op("Cast", softmax, to_i=sym_help.scalar_type_to_onnx[parsed_dtype]) |
| |
| return softmax |
| |
| |
| @parse_args("v", "i", "none") |
| def log_softmax(g, input, dim, dtype=None): |
| return_op = g.op("LogSoftmax", input, axis_i=dim) |
| if dtype and dtype.node().kind() != "prim::Constant": |
| parsed_dtype = sym_help._get_const(dtype, "i", "dtype") |
| return_op = g.op("Cast", return_op, to_i=sym_help.scalar_type_to_onnx[parsed_dtype]) |
| return return_op |
| |
| |
| @parse_args("v", "v", "i") |
| def frobenius_norm(g, self, dim=None, keepdim=False): |
| dim_val = sym_help._maybe_get_const(dim, "is") |
| if not sym_help._is_value(dim_val) and len(dim_val) == 0: |
| return g.op("ReduceL2", self, keepdims_i=0) |
| sqr = g.op("Mul", self, self) |
| sumsqr = sym_help._reducesum_helper(g, sqr, dim, keepdims_i=keepdim) |
| return g.op("Sqrt", sumsqr) |
| |
| |
| @parse_args("v", "v", "i", "i") |
| def split(g, self, split_size_or_sizes, dim, _outputs=None): |
| if not sym_help._is_split_static(split_size_or_sizes, _outputs): |
| split_out = g.op("SplitToSequence", self, split_size_or_sizes, axis_i=dim) |
| if _outputs is None: |
| return split_out |
| # Convert to multiple slice nodes iff number of splits and number of outputs are statically known. |
| if sym_help._is_packed_list(split_size_or_sizes) and \ |
| len(sym_help._unpack_list(split_size_or_sizes)) == _outputs: |
| split_sizes = [sym_help._unsqueeze_helper(g, v, [0]) for v in sym_help._unpack_list(split_size_or_sizes)] |
| |
| start = g.op("Constant", value_t=torch.tensor([0], dtype=torch.long)) |
| axis = g.op("Constant", value_t=torch.tensor([dim], dtype=torch.long)) |
| res = [] |
| for i in range(_outputs): |
| end = g.op("Add", start, split_sizes[i]) # split_sizes is a list of same length as _outputs |
| res.append(g.op("Slice", self, start, end, axis)) |
| start = end |
| return res |
| return [g.op("SequenceAt", split_out, g.op("Constant", value_t=torch.tensor([i], dtype=torch.long))) |
| for i in range(_outputs)] |
| |
| split_val = split_size_or_sizes.node()["value"] |
| if split_val.dim() > 0: |
| return g.op("Split", self, split_size_or_sizes, axis_i=dim, outputs=_outputs) |
| split_size = sym_help._get_const(split_size_or_sizes, "i", "split_size") |
| |
| size = sym_help._get_tensor_dim_size(self, dim) |
| if size is None: |
| if _outputs is not None: |
| size = split_size * _outputs |
| else: |
| raise RuntimeError("Unknown dimension size not supported") |
| splits = [split_size] * (size // split_size) |
| leftover = size % split_size |
| if leftover: |
| splits.append(leftover) |
| splits = g.op("Constant", value_t=torch.tensor(splits)) |
| return g.op("Split", self, splits, axis_i=dim, outputs=_outputs) |
| |
| |
| def split_with_sizes(g, self, split_sizes, dim, _outputs=None): |
| return split(g, self, split_sizes, dim, _outputs) |
| |
| |
| def unsafe_split(g, self, split_size_or_sizes, dim, _outputs=None): |
| return split(g, self, split_size_or_sizes, dim, _outputs) |
| |
| |
| def unsafe_split_with_sizes(g, self, split_sizes, dim, _outputs=None): |
| return split_with_sizes(g, self, split_sizes, dim, _outputs) |
| |
| |
| @parse_args("v", "i", "i") |
| def unbind(g, self, dim=0, _outputs=None): |
| if _outputs is None: |
| return g.op("SplitToSequence", |
| self, |
| g.op("Constant", value_t=torch.tensor(1, dtype=torch.long)), |
| axis_i=dim, keepdims_i=0) |
| |
| splits = g.op("Constant", value_t=torch.tensor([1] * _outputs)) |
| outputs = g.op("Split", self, splits, axis_i=dim, outputs=_outputs) |
| outputs = [outputs] if _outputs == 1 else outputs |
| squeezed_outputs = [g.op("Squeeze", out, g.op("Constant", value_t=torch.tensor([dim]))) for out in outputs] |
| return squeezed_outputs |
| |
| |
| # Emitted from `torch.nonzero(x, as_tuple=True)` |
| def nonzero_numpy(g, input, _outputs=None): |
| return unbind(g, nonzero(g, input), 1, _outputs=_outputs) |
| |
| |
| @parse_args("v", "v", "v", "i") |
| def where(g, condition, self=None, other=None, _outputs=None): |
| # Assumes that torch.where's first argument takes only Bool and Byte tensors. |
| if condition.type().scalarType() != "Bool": |
| condition = g.op("Cast", condition, to_i=sym_help.cast_pytorch_to_onnx["Bool"]) |
| if self is None: |
| condition = nonzero(g, condition) |
| return sym_help._unbind_helper(g, condition, g.op("Constant", value_t=torch.tensor(1)), _outputs) |
| return g.op("Where", condition, self, other) |
| |
| @parse_args("v", "v", "v", "i", "i", "i") |
| def fake_quantize_per_channel_affine(g, inputs, scale, zero_point, axis, quant_min=-128, quant_max=127): |
| if quant_min not in [0, -128] or quant_max not in [127, 255]: |
| raise RuntimeError( |
| "ONNX defines [0, 255] for quint8 and [-128, 127] for qint8, got [{}, {}]".format(quant_min, quant_max)) |
| |
| # ONNX defines zero_point to be int8 or uint8 |
| if quant_min == 0: |
| zero_point = g.op("Cast", zero_point, to_i=sym_help.cast_pytorch_to_onnx["Byte"]) |
| else: |
| zero_point = g.op("Cast", zero_point, to_i=sym_help.cast_pytorch_to_onnx["Char"]) |
| return g.op( |
| "DequantizeLinear", |
| g.op("QuantizeLinear", inputs, scale, zero_point, axis_i=axis), |
| scale, zero_point, axis_i=axis) |
| |
| def _reduce_op_symbolic(onnx_op_name): |
| def symbolic(g, self, dim=None, keepdim=None): |
| self = _maybe_cast_reduce_op_input(g, self) |
| if dim is None: |
| # all-reduce path |
| return sym_help._handle_reduce_dim_none(g, self, onnx_op_name) |
| else: |
| keepdim = sym_help._get_const(keepdim, "i", "keepdim") |
| return g.op(onnx_op_name, self, dim, keepdims_i=keepdim) |
| return symbolic |
| |
| def _reduce_with_dtype(onnx_op, name): |
| symbolic = _reduce_op_symbolic(onnx_op) |
| |
| @overload_by_arg_count |
| def reduce(g, *args, **kwargs): |
| @parse_args("v", "none") |
| def reduce_nodim(g, self, dtype): |
| if dtype.node().kind() == "onnx::Constant": |
| dtype = sym_help._get_const(dtype, "i", "dtype") |
| self = g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype]) |
| elif dtype.node().kind() != "prim::Constant": |
| return _unimplemented(name, "dtype") |
| return symbolic(g, self) |
| |
| @parse_args("v", "v", "i", "none") |
| def reduce_dim(g, self, dim, keepdim, dtype): |
| if dtype.node().kind() == "onnx::Constant": |
| dtype = sym_help._get_const(dtype, "i", "dtype") |
| self = g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[dtype]) |
| elif dtype.node().kind() != "prim::Constant": |
| return _unimplemented(name, "dtype") |
| return symbolic(g, self, dim, keepdim) |
| return reduce_nodim, reduce_dim |
| return reduce |
| |
| sum = _reduce_with_dtype("ReduceSum", "sum") |
| |
| @parse_args("v", "i", "i", "i") |
| def unsafe_chunk(g, self, chunks, dim, _outputs=None): |
| if _outputs is None: |
| return g.op("SplitToSequence", |
| self, |
| g.op("Constant", value_t=torch.tensor(1, dtype=torch.long)), |
| axis_i=dim, keepdims_i=0) |
| |
| size = sym_help._get_tensor_dim_size(self, dim) |
| if size is None: |
| return _unimplemented("unsafe_chunk", "unknown dimension size") |
| split_size = (size + chunks - 1) // chunks |
| splits = [split_size] * (size // split_size) |
| leftover = size % split_size |
| if leftover: |
| splits.append(leftover) |
| |
| # TODO: So far we don"t have a module using this method. We"ll keep |
| # this as a constant unless we see a request of dynamics in any |
| # user's modules. |
| splits = g.op("Constant", value_t=torch.tensor(splits, dtype=torch.long)) |
| return g.op("Split", self, splits, axis_i=dim, outputs=_outputs) |
| |
| def repeat_interleave(g, self, repeats, dim=None, output_size=None): |
| input = self |
| final_dim = dim |
| # if dim is None flatten |
| # By default, use the flattened input array, and return a flat output array |
| if sym_help._is_none(dim): |
| input = sym_help._reshape_helper(g, self, g.op("Constant", value_t=torch.tensor([-1]))) |
| dim = 0 |
| else: |
| dim = sym_help._maybe_get_scalar(dim) |
| |
| repeats_dim = sym_help._get_tensor_rank(repeats) |
| repeats_sizes = sym_help._get_tensor_sizes(repeats) |
| input_sizes = sym_help._get_tensor_sizes(input) |
| if repeats_dim is None: |
| raise RuntimeError("Unsupported: ONNX export of repeat_interleave for unknown " |
| "repeats rank.") |
| if repeats_sizes is None: |
| raise RuntimeError("Unsupported: ONNX export of repeat_interleave for unknown " |
| "repeats size.") |
| if input_sizes is None: |
| raise RuntimeError("Unsupported: ONNX export of repeat_interleave for unknown " |
| "input size.") |
| # Handle cases where dim is negative |
| if dim < 0: |
| dim += len(input_sizes) |
| |
| output_sizes = input_sizes.copy() |
| for idx, input_size in enumerate(input_sizes): |
| if input_size is None: |
| output_sizes[idx], input_sizes[idx] = 0, -1 |
| print(output_sizes, input_sizes) |
| |
| cond_dynamic_repeats = (repeats_dim == 1 and repeats_sizes[0] is None) |
| # If input size is dynamic or repeats vector is dynamic |
| if output_sizes[dim] == 0 or cond_dynamic_repeats: |
| reps = sym_help._size_helper(g, input, dim) |
| reps = unsqueeze(g, reps, 0) |
| # Check if repeats vector is a single integer value |
| # or a single dimension tensor with non-dynamic values |
| if repeats_dim == 0 or (repeats_dim == 1 and repeats_sizes[0] == 1): |
| if not sym_help._is_tensor(repeats): |
| repeats = g.op("Constant", value_t=torch.LongTensor(repeats)) |
| repeats = g.op("Expand", repeats, reps) |
| # Check if repeats is dynamic |
| # As repeats is dynamic, we use a where node as a substitute for the if statement |
| # If repests_dim = 1, expand repeats otherwise use original tensor |
| elif cond_dynamic_repeats: |
| repeat_dim = sym_help._size_helper(g, repeats, g.op("Constant", value_t=torch.LongTensor([0]))) |
| repeat_cond = g.op("Equal", repeat_dim, g.op("Constant", value_t=torch.LongTensor([1]))) |
| repeats = where(g, repeat_cond, g.op("Expand", repeats, reps), repeats) |
| # There are cases when the repeats are 1-d tensor with multiple repeats, but dim |
| # provided along one of the dynamic axes provided. A simple example would be |
| # input.shape -> [1, 1, *] where * represents the dynamic axes, and dim = 2 |
| # Now, repeat interleaving can be performed in pytorch when the value of * matches |
| # with the number of elements in repeat, for example if * -> 2, number of repeats |
| # should be 2 as well. |
| else: |
| return torch.onnx.symbolic_opset9.repeat_interleave(g, self, repeats, final_dim) |
| |
| reps_like = g.op("ConstantOfShape", g.op("Shape", repeats), |
| value_t=torch.tensor([1], dtype=torch.long)) |
| r_splits = split(g, repeats, reps_like, 0) |
| i_splits = split(g, input, reps_like, dim) |
| |
| output_sizes[dim], input_sizes[dim] = -1, 1 |
| |
| # Create a loop to iterate over each value along the dimension |
| # and perform individual interleaving using the repeats tensor |
| # Loop is of the following pattern |
| # input (trip_count, cond) |
| # int trip_count = ...; |
| # bool cond = ...; |
| # for (int i=0; i < trip_count && cond; ++i) { |
| # cond = ...; |
| # } |
| |
| # Loop conditions |
| loop_condition = g.op("Constant", value_t=torch.tensor(1)) |
| loop_condition = g.op("Cast", loop_condition, to_i=9) |
| loop_len = reps |
| |
| # Create an empty sequence to store final expansions |
| final_splits = g.op("SequenceEmpty") |
| loop = g.op("Loop", loop_len, loop_condition, final_splits) |
| |
| # Loop inputs |
| loop_block = _add_block(loop.node()) |
| block_input_iter = _add_input_to_block(loop_block) |
| cond = _add_input_to_block(loop_block) |
| final_splits = _add_input_to_block(loop_block) |
| |
| r_split = loop_block.op("SequenceAt", r_splits, block_input_iter) |
| i_split = loop_block.op("SequenceAt", i_splits, block_input_iter) |
| |
| i_split = unsqueeze(loop_block, i_split, dim + 1) |
| r_concat = [loop_block.op("Constant", value_t=torch.LongTensor(input_sizes[:dim + 1])), |
| r_split, |
| loop_block.op("Constant", value_t=torch.LongTensor(input_sizes[dim + 1:]))] |
| r_concat = loop_block.op("Concat", *r_concat, axis_i=0) |
| i_split = expand(loop_block, i_split, r_concat, None) |
| i_split = sym_help._reshape_helper(loop_block, i_split, |
| g.op("Constant", value_t=torch.LongTensor(output_sizes))) |
| final_splits = loop_block.op("SequenceInsert", final_splits, i_split) |
| |
| # Loop outputs |
| cond_out = loop_block.op("Cast", loop_condition, to_i=9) |
| _add_output_to_block(loop_block, cond_out) |
| _add_output_to_block(loop_block, final_splits) |
| |
| loop_out = loop.node().output() |
| loop_out = g.op("ConcatFromSequence", loop_out, axis_i=dim) |
| return loop_out |
| |
| |
| @parse_args("v", "i", "i", "i") |
| def diagonal(g, self, offset, dim1, dim2): |
| dim1_size = size(g, self, dim=g.op("Constant", value_t=torch.LongTensor([dim1]))) |
| dim2_size = size(g, self, dim=g.op("Constant", value_t=torch.LongTensor([dim2]))) |
| |
| # Create appropriate mask |
| mask_shape = g.op("Concat", dim1_size, dim2_size, axis_i=0) |
| mask = zeros(g, mask_shape, None, None, None) |
| mask = g.op("EyeLike", mask, k_i=offset) |
| |
| # dim1 and dim2 appended as a dimension at the end of the shape |
| rank = sym_help._get_tensor_rank(self) |
| if rank is not None: |
| axes = list(range(rank)) |
| axes.remove(dim1) |
| axes.remove(dim2) |
| self = g.op("Transpose", self, perm_i=axes + [dim1, dim2]) |
| else: |
| return _unimplemented("diagonal", "unknown input rank") |
| |
| # Multiply input and mask to calculate values along diagonal |
| # The mask consists of one values where diagonal values are to be calculated |
| # For example: |
| # [[1.1, 1.2, 1.3], * [[1, 0, 0] = [[1.1, 0, 0], |
| # [2.1, 2.2, 2.3], [0, 1, 0] [0, 2.2, 0], |
| # [3.1, 3.2, 3.3]] [0, 0, 1]] [0, 0, 3.3]] |
| result = g.op("Mul", self, mask) |
| result = sym_help._reducesum_helper(g, result, axes_i=[-1], keepdims_i=0) |
| |
| # Calculate gather indices based on offset and dims |
| # If offset is greater than zero, set offset to zero as this aids in |
| # calculation of selection window |
| offset_op = g.op("Constant", value_t=torch.LongTensor([offset])) |
| if offset >= 0: |
| diag_size = g.op("Max", g.op("Min", dim1_size, g.op("Sub", dim2_size, offset_op)), |
| g.op("Constant", value_t=torch.LongTensor([0]))) |
| offset = 0 |
| else: |
| diag_size = g.op("Max", g.op("Min", g.op("Add", dim1_size, offset_op), dim2_size), |
| g.op("Constant", value_t=torch.LongTensor([0]))) |
| diag_size = g.op("Concat", diag_size, axis_i=0) |
| |
| # Calculate which diagonal values to select |
| # For example, in cases with offsets: |
| # [[0, 1.1, 0] |
| # [0, 0, 2.2]] |
| # we need to select the last two columns, so we create a tensor |
| # with all columns that are to be selected |
| # So in this example, it is [1, 2] |
| select_window_ones_fill = ones(g, diag_size, 4, None, None) |
| select_window = g.op("CumSum", select_window_ones_fill, g.op("Constant", value_t=torch.LongTensor([0]))) |
| select_window = g.op("Add", select_window, g.op("Constant", value_t=torch.LongTensor([abs(offset) - 1]))) |
| |
| gather_shape = [size(g, result, |
| dim=g.op("Constant", value_t=torch.LongTensor([axis]))) for axis in list(range(rank))[:-2]] |
| gather_shape.append(diag_size) |
| gather_shape = g.op("Concat", *gather_shape, axis_i=0) |
| gather_indices = zeros(g, gather_shape, 4, None, None) |
| |
| # There might be cases where offset value is greater than number of rows/columns |
| # and might cause the diagonal to overrun and as a result of this, diag_size would be zero. |
| # For example, if |
| # offset = 9, dim1_size = 2 (columns), dim2_size = 4 (rows) |
| # diag_size = max(min(2, (4-9)), 0) = 0, based on calculation above |
| # Cases with diagonal overrun always result in diag_size = max(0, -ve value) = 0 |
| # In cases without diagonal overrun, we select the appropriate rows/columns along which we |
| # are calculating diagonal values. In cases with diagonal overrun, we return a tensor which has |
| # the dimension of the row/column where overrun occurred as 0-dim, as we are essentially |
| # returning an empty tensor |
| overrun_cond = g.op("Not", g.op("Equal", diag_size, g.op("Constant", value_t=torch.tensor(0, dtype=torch.int64)))) |
| if_op = g.op("If", overrun_cond) |
| if_node = if_op.node() |
| |
| if_block = _add_block(if_node) |
| gather_indices_if_block = if_block.op("Add", gather_indices, select_window) |
| gather_indices_if_block = sym_help._unsqueeze_helper(if_block, gather_indices_if_block, [rank - 1]) |
| final_non_overrun_ = if_block.op("GatherND", result, gather_indices_if_block, batch_dims_i=rank - 2) |
| _add_output_to_block(if_block, final_non_overrun_) |
| |
| else_block = _add_block(if_node) |
| final_overrun_ = zeros(else_block, gather_shape, 6, None, None) |
| _add_output_to_block(else_block, final_overrun_) |
| return if_op |