blob: fffe427c34f390067b270ae59cedd324cbfcd3b7 [file] [log] [blame]
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from sys import maxsize
import torch
import torch.onnx.symbolic_helper as sym_help
import warnings
from torch.onnx.symbolic_helper import parse_args, _unimplemented, _is_tensor_list, ScalarType
from torch.onnx.symbolic_opset9 import expand, unused, mul
from torch.nn.modules.utils import _single, _pair, _triple
from torch.onnx.utils import _add_block, _add_input_to_block, _add_output_to_block
# EDITING THIS FILE? READ THIS FIRST!
# see Note [Edit Symbolic Files] in symbolic_helper.py
# This file exports ONNX ops for opset 11
@parse_args("v", "f", "f")
def hardtanh(g, self, min_val, max_val):
dtype = self.type().scalarType()
if dtype is None:
dtype = ScalarType.FLOAT
else:
dtype = sym_help.scalar_type_to_onnx.index(sym_help.cast_pytorch_to_onnx[dtype])
min_val = g.op("Constant", value_t=torch.tensor(min_val, dtype=sym_help.scalar_type_to_pytorch_type[dtype]))
max_val = g.op("Constant", value_t=torch.tensor(max_val, dtype=sym_help.scalar_type_to_pytorch_type[dtype]))
return g.op("Clip", self, min_val, max_val)
def clamp(g, self, min, max):
dtype = self.type().scalarType()
def _cast_if_not_none(tensor, dtype):
if tensor is not None and not sym_help._is_none(tensor):
return g.op("Cast", tensor, to_i=sym_help.cast_pytorch_to_onnx[dtype])
else:
return tensor
if dtype is not None:
min = _cast_if_not_none(min, dtype)
max = _cast_if_not_none(max, dtype)
if sym_help._is_none(min):
return clamp_max(g, self, max)
elif sym_help._is_none(max):
return clamp_min(g, self, min)
else:
if sym_help._get_tensor_rank(min) == 0 and sym_help._get_tensor_rank(max) == 0:
return g.op("Clip", self, min, max)
else:
return clamp_max(g, clamp_min(g, self, min), max)
@parse_args("v", "v")
def clamp_min(g, self, min):
dtype = self.type().scalarType()
min = g.op("Cast", min, to_i=sym_help.cast_pytorch_to_onnx[dtype])
if sym_help._get_tensor_rank(min) == 0:
max = unused(g)
return g.op("Clip", self, min, max)
else:
return g.op("Max", self, min)
@parse_args("v", "v")
def clamp_max(g, self, max):
dtype = self.type().scalarType()
max = g.op("Cast", max, to_i=sym_help.cast_pytorch_to_onnx[dtype])
if sym_help._get_tensor_rank(max) == 0:
min = unused(g)
return g.op("Clip", self, min, max)
else:
return g.op("Min", self, max)
def relu6(g, input):
relu = g.op("Relu", input)
dtype = input.type().scalarType()
if dtype is None:
dtype = ScalarType.FLOAT
else:
dtype = sym_help.scalar_type_to_onnx.index(sym_help.cast_pytorch_to_onnx[dtype])
min_val = g.op("Constant", value_t=torch.tensor(0, dtype=sym_help.scalar_type_to_pytorch_type[dtype]))
max_val = g.op("Constant", value_t=torch.tensor(6, dtype=sym_help.scalar_type_to_pytorch_type[dtype]))
return clamp(g, relu, min_val, max_val)
# Opset 11 gather accepts negative indices
@parse_args("v", "i", "v")
def select(g, self, dim, index):
return g.op("Gather", self, index, axis_i=dim)
def index_put(g, self, indices_list_value, values, accumulate=False):
if sym_help._is_packed_list(indices_list_value):
indices_list = sym_help._unpack_list(indices_list_value)
else:
indices_list = [indices_list_value]
if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK:
args = [self] + indices_list + [values, accumulate]
return g.op("ATen", *args, operator_s="index_put")
from torch.onnx.symbolic_opset9 import add, expand
accumulate = sym_help._parse_arg(accumulate, "b")
if len(indices_list) == 0:
return values
if len(indices_list) > 1:
for idx_ in range(len(indices_list)):
if indices_list[idx_].type().scalarType() == "Bool":
indices_list[idx_] = g.op("NonZero", indices_list[idx_])
index = indices_list[0]
for ind in indices_list[1:]:
index = add(g, index, ind)
broadcast_index_shape = g.op("Shape", index)
indices_list = [
sym_help._unsqueeze_helper(g, expand(g, ind, broadcast_index_shape, None), [-1]) for ind in indices_list
]
index = g.op("Concat", *indices_list, axis_i=-1)
else:
# Replace index_put node with masked_scatter or masked_fill
# when inputs to the index_put node contains a single boolean input.
#
# index_put -> masked_fill
# * input index contains single tensor of Bool type (e.g.: %24 <- %23).
# * input value contains single element (e.g.: %18).
#
# Torch IR
# %mask : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = aten::clone(%0, %6)
# %16 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) =
# aten::to(%8, %26, %27, %11, %12, %28, %29, %15)
# %18 : Float(requires_grad=0, device=cpu) = prim::Constant[value={1}]()
# %23 : Bool(8, strides=[1], device=cpu) = aten::view(%16, %22)
# %24 : Tensor?[] = prim::ListConstruct(%23)
# %25 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) =
# aten::index_put(%mask, %24, %18, %30)
# return (%25)
#
#
# index_put -> masked_scatter
# * input index contains single tensor of Bool type (e.g.: %32 <- %31).
# * input value contains multiple elements (e.g.: %28).
#
# Torch IR
# %mask : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu) = aten::clone(%0, %6)
# %28 : Float(8, strides=[1], requires_grad=0, device=cpu)
# = prim::Constant[value= 1 1 1 1 1 1 1 1 [ CPUFloatType{8} ]]()
# %15 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
# = aten::ne(%mask, %some_const)
# %23 : Bool(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
# = aten::to(%15, %34, %35, %18, %19, %36, %37, %22)
# %38 : Long(requires_grad=0, device=cpu) = prim::Constant[value={0}]()
# %30 : int[] = prim::Constant[value=[-1]]()
# %31 : Bool(8, strides=[1], device=cpu) = aten::view(%23, %30)
# %32 : Tensor?[] = prim::ListConstruct(%31)
# %33 : Float(2, 2, 2, strides=[4, 2, 1], requires_grad=0, device=cpu)
# = aten::index_put(%mask, %32, %28, %38)
# return (%33)
index = indices_list[0]
bool_inp = index
if bool_inp.type() is not None and bool_inp.type().scalarType() == "Bool":
rank = sym_help._get_tensor_rank(values)
if rank is not None and rank == 0:
from torch.onnx.symbolic_opset9 import masked_fill
return masked_fill(g, self, bool_inp, values)
return masked_scatter(g, self, bool_inp, values)
broadcast_index_shape = g.op("Shape", index)
index = sym_help._unsqueeze_helper(g, index, [-1])
sub_data_shape = sym_help._slice_helper(
g, g.op("Shape", self), axes=[0], starts=[len(indices_list)], ends=[maxsize])
values_shape = g.op("Concat", broadcast_index_shape, sub_data_shape, axis_i=0)
# Check if values is a singular value and expand accordingly
rank = sym_help._get_tensor_rank(values)
if rank is not None and rank == 0:
values = expand(g, values, values_shape, None)
values = sym_help._reshape_helper(g, values, values_shape)
dtype = self.type().scalarType()
if dtype is not None and dtype != values.type().scalarType():
values = g.op("Cast", values, to_i=sym_help.cast_pytorch_to_onnx[dtype])
dtype = sym_help.scalar_type_to_onnx.index(sym_help.cast_pytorch_to_onnx[dtype])
dtype = sym_help.scalar_type_to_pytorch_type[dtype]
if accumulate:
zeros = g.op("ConstantOfShape", g.op("Shape", self), value_t=torch.tensor([0], dtype=dtype))
result = g.op("ScatterND", zeros, index, values)
result = add(g, self, result)
else:
result = g.op("ScatterND", self, index, values)
return result
@parse_args("v", "i")
def pixel_shuffle(g, self, upscale_factor):
rank = sym_help._get_tensor_rank(self)
if rank is not None and rank != 4:
return _unimplemented("pixel_shuffle", "only support 4d input")
return g.op("DepthToSpace", self, blocksize_i=upscale_factor, mode_s="CRD")
def _interpolate(name, dim, interpolate_mode):
return sym_help._interpolate_helper(name, dim, interpolate_mode)
upsample_nearest1d = _interpolate("upsample_nearest1d", 3, "nearest")
upsample_nearest2d = _interpolate("upsample_nearest2d", 4, "nearest")
upsample_nearest3d = _interpolate("upsample_nearest3d", 5, "nearest")
upsample_linear1d = _interpolate("upsample_linear1d", 3, "linear")
upsample_bilinear2d = _interpolate("upsample_bilinear2d", 4, "linear")
upsample_trilinear3d = _interpolate("upsample_trilinear3d", 5, "linear")
upsample_bicubic2d = _interpolate("upsample_bicubic2d", 4, "cubic")
def __interpolate(g, input, size, scale_factor, mode, align_corners, recompute_scale_factor, antialias):
return sym_help.__interpolate_helper(g, input, size, scale_factor, mode, align_corners, recompute_scale_factor)
@parse_args("v", "i", "v", "v")
def gather(g, self, dim, index, sparse_grad=False):
if sym_help._maybe_get_const(sparse_grad, "i"):
return _unimplemented("gather", "sparse_grad == True")
if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK:
return g.op("ATen", self, dim, index, sparse_grad, operator_s="gather")
return g.op("GatherElements", self, index, axis_i=dim)
@parse_args("v", "i", "v", "v")
def scatter(g, self, dim, index, src):
from torch.onnx.symbolic_opset9 import expand_as
if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK:
return g.op("ATen", self, dim, index, src, operator_s="scatter")
src_type = src.type().scalarType()
src = sym_help._maybe_get_scalar(src)
if sym_help._is_value(src):
return g.op("ScatterElements", self, index, src, axis_i=dim)
else:
# Check if scalar "src" has same type as self (PyTorch allows different
# type for scalar src (but not when src is tensor)). If not, insert Cast node.
if self.type().scalarType() != src_type:
src = g.op("Cast", src, to_i=sym_help.cast_pytorch_to_onnx[self.type().scalarType()])
return g.op("ScatterElements", self, index, expand_as(g, src, index), axis_i=dim)
@parse_args("v", "i", "none")
def cumsum(g, self, dim, dtype=None):
dim_tensor = g.op("Constant", value_t=torch.tensor(dim, dtype=torch.int))
if dtype and dtype.node().kind() != "prim::Constant":
parsed_dtype = sym_help._get_const(dtype, "i", "dtype")
cast = g.op("Cast", self, to_i=sym_help.scalar_type_to_onnx[parsed_dtype])
else:
cast = self
csum = g.op("CumSum", cast, dim_tensor)
return csum
def masked_select(g, self, mask):
from torch.onnx.symbolic_opset9 import nonzero, expand_as
index = nonzero(g, expand_as(g, mask, self))
return g.op("GatherND", self, index)
def masked_scatter(g, self, mask, source):
from torch.onnx.symbolic_opset9 import nonzero, expand_as, size
index = nonzero(g, expand_as(g, mask, self))
# NOTE: source can have more elements than needed.
# It could also have arbitrary shape.
# This is not supported by ONNX::ScatterND, so we need to flatten and slice source tensor.
source = sym_help._reshape_helper(g, source, torch.LongTensor([-1]))
source = sym_help._slice_helper(g, source,
axes=torch.LongTensor([0]),
starts=torch.LongTensor([0]),
ends=size(g, index, torch.LongTensor([0])),
dynamic_slice=True)
return g.op("ScatterND", self, index, source)
def _len(g, self):
if _is_tensor_list(self) or self.node().kind() == "onnx::SplitToSequence":
return g.op("SequenceLength", self)
sz_0 = size(g, self, g.op("Constant", value_t=torch.LongTensor([0])))
return sym_help._squeeze_helper(g, sz_0, [0])
def __getitem_(g, self, i):
if sym_help._is_tensor_list(self):
# SequenceAt requires that the input be a List of Tensors
return g.op("SequenceAt", self, i)
else:
from torch.onnx.symbolic_opset9 import __getitem_ as getitem
return getitem(g, self, i)
def _set_item(g, tensor_list, i, v):
tensor_list = g.op("SequenceErase", tensor_list, i)
return g.op("SequenceInsert", tensor_list, v, i)
def append(g, self, tensor):
return g.op("SequenceInsert", self, tensor)
def add(g, self, other, alpha=None):
if sym_help._is_value(self) and sym_help._is_tensor_list(self):
tensor_list_node = other.node()
if tensor_list_node.kind() != "prim::ListConstruct":
return _unimplemented("add", "does not support adding dynamic tensor list to another")
tensors = sym_help._unpack_list(other)
l = self
for t in tensors:
l = g.op("SequenceInsert", l, t)
return l
return torch.onnx.symbolic_opset9.add(g, self, other, alpha)
def insert(g, self, pos, tensor):
return g.op("SequenceInsert", self, tensor, pos)
def pop(g, tensor_list, dim):
return g.op("SequenceErase", tensor_list, dim)
def Delete(g, tensor_list, dim):
return g.op("SequenceErase", tensor_list, dim)
def cat(g, tensor_list, dim):
if sym_help._is_packed_list(tensor_list):
from torch.onnx.symbolic_opset9 import cat as cat_opset9
return cat_opset9(g, tensor_list, dim)
else:
dim = sym_help._get_const(dim, "i", "dim")
return g.op("ConcatFromSequence", tensor_list, axis_i=dim)
def stack(g, tensor_list, dim):
if sym_help._is_packed_list(tensor_list):
from torch.onnx.symbolic_opset9 import stack as stack_opset9
return stack_opset9(g, tensor_list, dim)
else:
dim = sym_help._get_const(dim, "i", "dim")
return g.op("ConcatFromSequence", tensor_list, axis_i=dim, new_axis_i=1)
@parse_args("v", "i", "i", "i")
def _unique2(g, self, sorted, return_inverse, return_counts):
u, indices, inverse_indices, counts = g.op("Unique", self, sorted_i=sorted, outputs=4)
return u, inverse_indices, counts
def _avg_pool(name, tuple_fn):
@parse_args("v", "is", "is", "is", "i", "i", "none")
def symbolic_fn(g, input, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override=None):
padding = sym_help._avgpool_helper(tuple_fn, padding, kernel_size, stride, divisor_override, name)
if not stride:
stride = kernel_size
if count_include_pad:
input = g.op("Pad", input,
g.op("Constant", value_t=torch.tensor(((0,) * 2 + padding) * 2)), mode_s="constant")
padding = (0,) * len(padding)
output = g.op("AveragePool", input,
kernel_shape_i=tuple_fn(kernel_size),
strides_i=tuple_fn(stride),
pads_i=padding * 2,
ceil_mode_i=ceil_mode)
return output
return symbolic_fn
avg_pool1d = _avg_pool("avg_pool1d", _single)
avg_pool2d = _avg_pool("avg_pool2d", _pair)
avg_pool3d = _avg_pool("avg_pool3d", _triple)
@parse_args("v", "i", "i", "i", "i")
def unique_dim(g, self, dim, sorted, return_inverse, return_counts):
u, indices, inverse_indices, counts = g.op("Unique", self, axis_i=dim, sorted_i=sorted, outputs=4)
return u, inverse_indices, counts
@parse_args("v", "v", "i", "i", "i", "none")
def topk(g, self, k, dim, largest, sorted, out=None):
return sym_help._topk_helper(g, self, k, dim, largest=largest, sorted=sorted, out=out)
@parse_args("v", "i", "i", "none")
def sort(g, self, dim, decending, out=None):
return sym_help._sort_helper(g, self, dim, decending=decending, out=out)
def round(g, self):
return g.op("Round", self)
def remainder(g, input, other):
if sym_help._is_fp(input) or sym_help._is_fp(other):
from torch.onnx.symbolic_opset9 import remainder as _remainder_9
return _remainder_9(g, input, other)
return g.op("Mod", input, other, fmod_i=0)
@parse_args("v", "v", "i", "i")
def split(g, self, split_size_or_sizes, dim, _outputs=None):
if not sym_help._is_split_static(split_size_or_sizes, _outputs):
split_out = g.op("SplitToSequence", self, split_size_or_sizes, axis_i=dim)
if _outputs is None:
return split_out
# Convert to multiple slice nodes iff number of splits and number of outputs are statically known.
if sym_help._is_packed_list(split_size_or_sizes) and len(sym_help._unpack_list(split_size_or_sizes)) == _outputs:
split_sizes = [sym_help._unsqueeze_helper(g, v, [0]) for v in sym_help._unpack_list(split_size_or_sizes)]
start = g.op("Constant", value_t=torch.tensor([0], dtype=torch.long))
axis = g.op("Constant", value_t=torch.tensor([dim], dtype=torch.long))
res = []
for i in range(_outputs):
end = g.op("Add", start, split_sizes[i]) # split_sizes is a list of same length as _outputs
res.append(g.op("Slice", self, start, end, axis))
start = end
return res
return [g.op("SequenceAt", split_out, g.op("Constant", value_t=torch.tensor([i], dtype=torch.long)))
for i in range(_outputs)]
else:
return torch.onnx.symbolic_opset9.split(g, self, split_size_or_sizes, dim, _outputs)
@parse_args("v", "v", "i", "i")
def split_with_sizes(g, self, split_sizes, dim, _outputs=None):
return split(g, self, split_sizes, dim, _outputs)
@parse_args("v", "i", "i")
def unbind(g, self, dim=0, _outputs=None):
if _outputs is None:
return g.op("SplitToSequence", self, g.op("Constant", value_t=torch.tensor(1, dtype=torch.long)), axis_i=dim, keepdims_i=0)
else:
return torch.onnx.symbolic_opset9.unbind(g, self, dim, _outputs)
# Generate paddings in ONNX order based on pad in pytorch.
# Args:
# input: the input tensor.
# pad: the paddings in pytorch.
# The order is dim_n_begin, dim_n_end, dim_n-1_begin, dim_n-1_end, ..., dim_m_begin, dim_m_end,
# where m is in range [0, n].
def _prepare_onnx_paddings(g, input, pad):
if not sym_help._is_packed_list(pad) and sym_help._is_list(pad) and sym_help._is_scalar_list(pad):
pad = g.op("ConcatFromSequence", pad, axis_i=0, new_axis_i=1)
# The desired order of paddings is
# dim_0_begin, dim_1_begin, ... , dim_0_end, ..., dim_n_end.
# n is the dimension of input.
# Assume zero-dimensions in the beginning, pad the "pad" sequence with zeros in the beginning
pad_len = torch.onnx.symbolic_opset9.size(g, pad, g.op("Constant", value_t=torch.tensor([0])))
# Set extension = [0] * (dim * 2 - len(pad))
rank = sym_help._get_tensor_rank(input)
if rank is None:
rank = g.op("Size", g.op("Shape", input))
else:
rank = g.op("Constant", value_t=torch.tensor(rank, dtype=torch.int64))
extension = g.op("Sub", g.op("Mul", rank,
g.op("Constant", value_t=torch.tensor(2, dtype=torch.int64))), pad_len)
# Concat pad with extension: paddings = [dim_n_begin, dim_n_end, dim_n-1_begin, dim_n-1_end, 0, 0, ... ]
# Currently ONNX only supports int64 type for Pad
pad = g.op("Cast", pad, to_i=sym_help.cast_pytorch_to_onnx["Long"])
paddings = g.op("Concat", pad, g.op("ConstantOfShape", extension, value_t=torch.tensor([0], dtype=torch.int64)), axis_i=0)
# Reshape and reverse order and collate first beginnings and then ends
# paddings = [[..., 0, dim_n-1_begin, dim_n_begin],
# [..., 0, dim_n-1_end, dim_n_end]]
# Reshape back to 1-D paddings = [..., 0, dim_n - 1_begin, dim_n_begin, ..., 0, dim_n - 1_end, dim_n_end]
paddings = sym_help._reshape_helper(g, paddings, g.op("Constant", value_t=torch.tensor([-1, 2])))
paddings = g.op("Transpose", torch.onnx.symbolic_opset10.flip(g, paddings, [0]), perm_i=[1, 0])
paddings = sym_help._reshape_helper(g, paddings, g.op("Constant", value_t=torch.tensor([-1])))
padding_c = g.op("Cast", paddings, to_i=sym_help.cast_pytorch_to_onnx["Long"])
return padding_c
def constant_pad_nd(g, input, padding, value=None):
mode = "constant"
value = sym_help._maybe_get_scalar(value)
value = sym_help._if_scalar_type_as(g, value, input)
pad = _prepare_onnx_paddings(g, input, padding)
return g.op("Pad", input, pad, value, mode_s=mode)
def reflection_pad(g, input, padding):
mode = "reflect"
paddings = _prepare_onnx_paddings(g, input, padding)
return g.op("Pad", input, paddings, mode_s=mode)
def replication_pad(g, input, padding):
mode = "edge"
paddings = _prepare_onnx_paddings(g, input, padding)
return g.op("Pad", input, paddings, mode_s=mode)
reflection_pad1d = reflection_pad
reflection_pad2d = reflection_pad
reflection_pad3d = reflection_pad
replication_pad1d = replication_pad
replication_pad2d = replication_pad
replication_pad3d = replication_pad
def linalg_det(g, self):
return g.op("Det", self)
def logdet(g, input):
from torch.onnx.symbolic_opset9 import log
return log(g, linalg_det(g, input))
def arange(g, *args):
def _get_arange_dtype(dtype):
dtype = sym_help._maybe_get_const(dtype, "i")
return dtype
if len(args) == 2 or len(args) == 5:
if len(args) == 2:
# aten::arange(Scalar end, Tensor out)
dtype = None
else:
# aten::arange(Scalar end, ScalarType dtype, Layout, Device, bool pin_memory)
dtype = _get_arange_dtype(args[1])
type, end, start, step = sym_help._arange_cast_helper(g, end=args[0], dtype=dtype)
start_default = g.op("Constant", value_t=torch.tensor(0, dtype=sym_help.scalar_type_to_pytorch_type[type]))
delta_default = g.op("Constant", value_t=torch.tensor(1, dtype=sym_help.scalar_type_to_pytorch_type[type]))
arange_tensor = g.op("Range", start_default, end, delta_default)
elif len(args) == 4 or len(args) == 7:
if len(args) == 4:
# aten::arange(Scalar start, Scalar end, Scalar step, Tensor out)
dtype = None
else:
# aten::arange(Scalar start, Scalar end, Scalar step, ScalarType dtype, Layout, Device, bool pin_memory)
dtype = _get_arange_dtype(args[3])
type, end, start, step = sym_help._arange_cast_helper(g, start=args[0], end=args[1], step=args[2], dtype=dtype)
arange_tensor = g.op("Range", start, end, step)
elif len(args) == 6:
# aten::arange(Scalar start, Scalar end, ScalarType dtype, Layout, Device, bool pin_memory)
dtype = _get_arange_dtype(args[2])
type, end, start, step = sym_help._arange_cast_helper(g, start=args[0], end=args[1], dtype=dtype)
delta_default = g.op("Constant", value_t=torch.tensor(1, dtype=sym_help.scalar_type_to_pytorch_type[type]))
arange_tensor = g.op("Range", start, end, delta_default)
else:
raise NotImplementedError("Unknown aten::arange signature taking " + str(len(args)) + " arguments.")
return arange_tensor
@parse_args("v", "i")
def _dim_arange(g, like, dim):
like_shape = g.op("Shape", like)
stop = g.op("Gather", like_shape, g.op("Constant", value_t=torch.tensor(dim)), axis_i=0)
if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK:
return g.op("_caffe2::Range", stop)
return arange(g, stop, 4, None, None, None)
def size(g, self, dim=None):
if dim is None:
return g.op("Shape", self)
return sym_help._size_helper(g, self, dim)
def squeeze(g, self, dim=None):
if dim is None:
return g.op("Squeeze", self)
dim = sym_help._get_const(dim, "i", "dim")
input_rank = sym_help._get_tensor_rank(self)
adjusted_dim = dim
if input_rank is not None and dim < 0:
adjusted_dim += input_rank
dim_size = sym_help._get_tensor_dim_size(self, adjusted_dim)
if (dim < 0 and input_rank is None) or dim_size is None:
# If onnx shape inference is not on, export always as dynamic.
# Because we cannot tell if observed static shape is also static at runtime.
# create "cond" node (condition is shape[i]==1)
dim_constant = g.op("Constant", value_t=torch.tensor([dim]))
size = sym_help._size_helper(g, self, dim_constant)
const_one = g.op("Constant", value_t=torch.ones(1, dtype=torch.int64))
cond = g.op("Equal", size, const_one)
# create the "If" node and add the "then" and "else" blocks to it.
if_node_outputs = g.op("If", cond)
if_node = if_node_outputs.node()
if_block = torch.onnx.utils._add_block(if_node)
squeeze_ = sym_help._squeeze_helper(if_block, self, [dim])
torch.onnx.utils._add_output_to_block(if_block, squeeze_)
else_block = torch.onnx.utils._add_block(if_node)
identity_ = else_block.op("Identity", self)
torch.onnx.utils._add_output_to_block(else_block, identity_)
return if_node_outputs
# For static input shape
dim = adjusted_dim
if dim_size > 1:
warnings.warn("This model contains a squeeze operation on dimension " + str(dim) + ". The size of " +
"this dimension in the given input is " + str(dim_size) + ". The model will " +
"be exported without the squeeze node. If the model is intended to be used with dynamic " +
"input shapes, please export with dynamic_axes argument.")
return self
return sym_help._squeeze_helper(g, self, [dim])
@parse_args("v", "i")
def unsqueeze(g, self, dim):
return sym_help._unsqueeze_helper(g, self, [dim])
def mm(g, self, other):
return g.op("Gemm", self, other, beta_f=0.0, alpha_f=1.0)
def index(g, self, index):
if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK:
return g.op("ATen", self, index, operator_s="index")
if sym_help._is_packed_list(index):
indices = sym_help._unpack_list(index)
else:
indices = [index]
# Handle single mask index.
if len(indices) == 1:
index = indices[0]
if not sym_help._is_none(index) and (index.type().scalarType() == "Bool" or index.type().scalarType() == "Byte"):
from torch.onnx.symbolic_opset9 import nonzero
index = nonzero(g, index)
return g.op("GatherND", self, index)
from torch.onnx.symbolic_opset9 import index as index_opset9
return index_opset9(g, self, index)
def index_fill(g, self, dim, index, value):
dim_value = sym_help._parse_arg(dim, "i")
if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK:
return g.op("ATen", self, index, value, dim_i=dim_value, operator_s="index_fill")
expanded_index_shape, expanded_index = sym_help._index_fill_reshape_helper(g, self, dim, index)
value = sym_help._maybe_get_scalar(value)
value = sym_help._if_scalar_type_as(g, value, self)
expanded_value = expand(g, value, expanded_index_shape, None)
return scatter(g, self, dim, expanded_index, expanded_value)
def index_copy(g, self, dim, index, source):
dim_value = sym_help._parse_arg(dim, "i")
if sym_help._operator_export_type == torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK:
return g.op("ATen", self, index, source, dim_i=dim_value, operator_s="index_copy")
expanded_index_shape, expanded_index = sym_help._index_fill_reshape_helper(g, self, dim, index)
return scatter(g, self, dim, expanded_index, source)
def __rshift_(g, self, other):
# make sure to cast other to self's type
# (when self is long, make sure that other is not float)
if other.type().scalarType() != self.type().scalarType():
other = g.op("Cast", other, to_i=sym_help.cast_pytorch_to_onnx[self.type().scalarType()])
if self.type().scalarType() == "Byte":
return g.op("BitShift", self, other, direction_s="RIGHT")
two = g.op("Constant", value_t=torch.tensor(2, dtype=torch.float32))
# exponent (same type as self) has to be float or double in onnx::Pow
if not sym_help._is_fp(self):
other = g.op("Cast", other, to_i=sym_help.cast_pytorch_to_onnx["Float"])
two_pow = g.op("Pow", two, other)
two_pow = g.op("Cast", two_pow, to_i=sym_help.cast_pytorch_to_onnx[self.type().scalarType()])
rshift = g.op("Div", self, two_pow)
return rshift
def __lshift_(g, self, other):
# make sure to cast other to self's type
# (when self is long, make sure that other is not float)
if other.type().scalarType() != self.type().scalarType():
other = g.op("Cast", other, to_i=sym_help.cast_pytorch_to_onnx[self.type().scalarType()])
if self.type().scalarType() == "Byte":
return g.op("BitShift", self, other, direction_s="LEFT")
two = g.op("Constant", value_t=torch.tensor(2, dtype=torch.float32))
# exponent (same type as self) has to be float or double in onnx::Pow
if not sym_help._is_fp(self):
other = g.op("Cast", other, to_i=sym_help.cast_pytorch_to_onnx["Float"])
two_pow = g.op("Pow", two, other)
two_pow = g.op("Cast", two_pow, to_i=sym_help.cast_pytorch_to_onnx[self.type().scalarType()])
lshift = g.op("Mul", self, two_pow)
return lshift
def _get_im2col_indices_along_dim(g, input_d, kernel_size_d, dilation_d, padding_d, stride_d):
# Input is always 4-D (N, C, H, W)
# Calculate indices of sliding blocks along spatial dimension
# Slide kernel over input each dim d:
# each dimension d ranges from 0 to input[d]+2xpadding[d]-dilation[d]x(kernel_size[d]-1)
# with steps = stride
blocks_d = g.op("Add", input_d, g.op("Constant", value_t=torch.tensor(padding_d * 2)))
blocks_d = g.op("Sub", blocks_d, g.op("Constant", value_t=torch.tensor(dilation_d * (kernel_size_d - 1))))
# Stride kernel over input and find starting indices along dim d
blocks_d_indices = g.op("Range", g.op("Constant", value_t=torch.tensor(0)),
blocks_d, g.op("Constant", value_t=torch.tensor(stride_d)))
# Apply dilation on kernel and find its indices along dim d
kernel_grid = torch.arange(0, kernel_size_d * dilation_d, dilation_d)
kernel_grid = g.op("Constant", value_t=kernel_grid.unsqueeze(0))
# Broadcast and add kernel staring positions (indices) with
# kernel_grid along dim d, to get block indices along dim d
blocks_d_indices = sym_help._unsqueeze_helper(g, blocks_d_indices, [0]) # Reshape to [1, -1]
kernel_mask = sym_help._reshape_helper(g, kernel_grid, g.op("Constant", value_t=torch.tensor([-1, 1])))
block_mask = g.op("Add", blocks_d_indices, kernel_mask)
return block_mask
def _get_im2col_padded_input(g, input, padding_h, padding_w):
# Input is always 4-D tensor (N, C, H, W)
# Padding tensor has the following format: (padding_h, padding_w)
# Reshape the padding to follow ONNX format: (dim1_begin, dim2_begin,...,dim1_end, dim2_end,...)
pad = g.op("Constant", value_t=torch.LongTensor([0, 0, padding_h, padding_w] * 2))
return g.op("Pad", input, pad)
def _get_im2col_output_shape(g, input, kernel_h, kernel_w):
batch_dim = size(g, input, g.op("Constant", value_t=torch.tensor(0)))
channel_dim = size(g, input, g.op("Constant", value_t=torch.tensor(1)))
channel_unfolded = g.op("Mul", channel_dim,
g.op("Constant", value_t=torch.tensor(kernel_h * kernel_w)))
return g.op("Concat",
sym_help._unsqueeze_helper(g, batch_dim, [0]),
sym_help._unsqueeze_helper(g, channel_unfolded, [0]),
g.op("Constant", value_t=torch.tensor([-1])), axis_i=0)
@parse_args("v", "is", "is", "is", "is")
def im2col(g, input, kernel_size, dilation, padding, stride):
# Input is always 4-D tensor (N, C, H, W)
# All other args are int[2]
input_h = size(g, input, g.op("Constant", value_t=torch.tensor(2)))
input_w = size(g, input, g.op("Constant", value_t=torch.tensor(3)))
stride_h, stride_w = stride[0], stride[1]
padding_h, padding_w = padding[0], padding[1]
dilation_h, dilation_w = dilation[0], dilation[1]
kernel_h, kernel_w = kernel_size[0], kernel_size[1]
blocks_row_indices = _get_im2col_indices_along_dim(g, input_h, kernel_h, dilation_h, padding_h, stride_h)
blocks_col_indices = _get_im2col_indices_along_dim(g, input_w, kernel_w, dilation_w, padding_w, stride_w)
output_shape = _get_im2col_output_shape(g, input, kernel_h, kernel_w)
padded_input = _get_im2col_padded_input(g, input, padding_h, padding_w)
# For a 4D matrix of size (1, 1, 3, 3) as below with kernel_size=2, stride=1, and dilation=1
# [[[[1., 2., 3.,],
# [4., 5., 6.,],
# [7., 8., 9.,]]]]
# First gather indices along rows (dim=2) with blocks_row_indices = [[0,1], [1,2]] to get:
# [[[[[1., 2., 3.],
# [4., 5., 6.]],
# [[4., 5., 6.],
# [7., 8., 9.]]]]]
# And then gather along cols (dim=4) with blocks_row_indices = [[0,1], [1,2]] to get:
# [[[[[[1., 2.],
# [4., 5.]],
# [[2., 3.],
# [5., 6]]],
# [[[4., 5.],
# [7., 8.]],
# [[5., 6.],
# [8., 9.]]]]]]
# Transpose dims 3 (depth) and 4 (rows), and then reshape to output shape (1, 1, 4, 4) to get:
# [[[1., 2., 4., 5.],
# [2., 3., 5., 6.],
# [4., 5., 7., 8.],
# [5., 6., 8., 9.]]]
output = g.op("Gather", padded_input, blocks_row_indices, axis_i=2)
output = g.op("Gather", output, blocks_col_indices, axis_i=4)
output = g.op("Transpose", output, perm_i=[0, 1, 2, 4, 3, 5])
return sym_help._reshape_helper(g, output, output_shape)
def narrow(g, input, dim, start, length):
from torch.onnx.symbolic_helper import _slice_helper
end = g.op("Add", start, length)
return _slice_helper(g, input, axes=dim, starts=start, ends=end, dynamic_slice=True)
@parse_args("v", "i", "i")
def flatten(g, input, start_dim, end_dim):
dim = sym_help._get_tensor_rank(input)
# use ONNX's Flatten operator for cases where the output shape is 2D
if start_dim == 1:
if (end_dim == -1 or (dim is not None and end_dim == dim - 1)):
return g.op("Flatten", input, axis_i=start_dim)
elif start_dim == 0:
if (end_dim == -2 or (dim is not None and end_dim == dim - 2)):
return g.op("Flatten", input, axis_i=end_dim + 1)
if dim is None:
return _unimplemented("dim",
"ONNX and PyTorch use different strategies to split the input. "
"Input rank must be known at export time.")
# if end_dim is negative add dim
if end_dim < 0 :
end_dim = dim + end_dim
return sym_help._flatten_helper(g, input, start_dim, end_dim, dim)
@parse_args("v", "v", "v", "i", "i", "i", "v", "i", "i")
def embedding_bag(g,
embedding_matrix,
indices,
offsets,
scale_grad_by_freq,
mode,
sparse,
per_sample_weights,
include_last_offset,
padding_idx):
if scale_grad_by_freq and sym_help._training_mode:
return sym_help._onnx_unsupported("embedding_bag with scale_grad_by_freq for training mode")
if padding_idx is not None and padding_idx >= 0:
raise RuntimeError("embedding_bag with padding_idx")
loop_condition = g.op("Constant", value_t=torch.tensor(1))
loop_condition = g.op("Cast", loop_condition, to_i=9)
zero = g.op("Constant", value_t=torch.tensor([0]))
indices_len = sym_help._unsqueeze_helper(g,
sym_help._size_helper(g, indices, g.op("Constant", value_t=torch.tensor(0))),
[0])
if not include_last_offset:
offsets = [offsets, indices_len]
offsets = g.op("Concat", *offsets, axis_i=0)
# Offsets holds the starting index position of each bag. So we create a list of the indices slices (determined by
# offsets) and gather those indices in indices_row. Then we use this subset of indices to gather from embeddings.
# The embeddings output is a loop scan output, so we can avoid creating a sequence and inserting elements in.
offsets_starts = sym_help._slice_helper(g, offsets, axes=[0], starts=[0], ends=[maxsize], steps=[1])
offsets_ends = sym_help._slice_helper(g, offsets, axes=[0], starts=[1], ends=[maxsize], steps=[1])
loop_len = sym_help._size_helper(g, offsets_ends, g.op("Constant", value_t=torch.tensor(0)))
loop = g.op("Loop", loop_len, loop_condition)
loop_block = _add_block(loop.node())
block_input_iter = _add_input_to_block(loop_block)
cond = _add_input_to_block(loop_block)
indices_start = loop_block.op("Gather", offsets_starts, block_input_iter, axis_i=0)
indices_end = loop_block.op("Gather", offsets_ends, block_input_iter, axis_i=0)
indices_start = sym_help._unsqueeze_helper(loop_block, indices_start, [0])
indices_end = sym_help._unsqueeze_helper(loop_block, indices_end, [0])
indices_row = loop_block.op("Slice", indices, indices_start, indices_end, zero)
embeddings = loop_block.op("Gather", embedding_matrix, indices_row, axis_i=0)
if not sym_help._is_none(per_sample_weights):
per_sample_weights_row = loop_block.op("Slice", per_sample_weights,
indices_start,
indices_end,
zero)
per_sample_weights_row = sym_help._unsqueeze_helper(loop_block, per_sample_weights_row, [1])
embeddings = loop_block.op("Mul", embeddings, per_sample_weights_row)
if mode == 0:
embeddings = sym_help._reducesum_helper(loop_block, embeddings, axes_i=[0], keepdims_i=0)
elif mode == 1:
embeddings = loop_block.op("ReduceMean", embeddings, axes_i=[0], keepdims_i=0)
else:
embeddings = loop_block.op("ReduceMax", embeddings, axes_i=[0], keepdims_i=0)
cond_out = loop_block.op("Cast", loop_condition, to_i=9)
_add_output_to_block(loop_block, cond_out)
_add_output_to_block(loop_block, embeddings)
# aten::embedding_bag returns a tuple of 4 elements: output, offset2bag, bag_size, max_indices.
# But the last three outputs are not used in torch.nn.EmbeddingBag or torch.nn.functional.embedding_bag.
return loop.node().output(), None, None, None
def prim_ConstantChunk(g, self, chunks, dim):
input_shape = g.op("Shape", self)
axis = g.op("Constant", value_t=torch.tensor([dim], dtype=torch.long))
input_shape_dim = g.op("Gather", input_shape, axis, axis_i=0)
start = g.op("Constant", value_t=torch.tensor([0], dtype=torch.long))
chunk_size = g.op("Constant", value_t=torch.tensor([chunks], dtype=torch.long))
chunk_size_minus_1 = g.op("Constant", value_t=torch.tensor([chunks - 1], dtype=torch.long))
input_shape_dim_shift = g.op("Add", input_shape_dim, chunk_size_minus_1)
chunk_dim = g.op("Div", input_shape_dim_shift, chunk_size)
res = []
for i in range(chunks):
index = g.op("Constant", value_t=torch.tensor([i + 1], dtype=torch.long))
end = g.op("Mul", chunk_dim, index)
res.append(g.op("Slice", self, start, end, axis))
start = end
return res
def chunk(g, self, chunks, dim):
# Calculate chunk size for dynamic chunk
dim_size = g.op("Gather", g.op("Shape", self), dim, axis_i=0)
chunk_size_s = g.op("Sub", chunks, g.op("Constant", value_t=torch.tensor([1], dtype=torch.long)))
chunk_size = g.op("Div", g.op("Add", dim_size, chunk_size_s), chunks)
# Create splits vector
chunk_vec = [expand(g, chunk_size, chunk_size_s, None),
g.op("Sub", dim_size, g.op("Mul", chunk_size, chunk_size_s))]
chunk_vec = g.op("Concat", *chunk_vec, axis_i=0)
return split(g, self, chunk_vec, dim)
def normal(g, loc, scale, seed):
# If you can sample from a given distribution with mean 0 and variance 1, then you can easily sample from a
# scale-location transformation of that distribution, which has mean μ and variance σ's square. If x is a sample
# from a mean 0 and variance 1 distribution then
# σx+μ
# is a sample with mean μ and variance σ's square.
result = mul(g, scale, g.op("RandomNormalLike", loc))
return add(g, result, loc)